首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A long history of urbanization and industrialization has affected trace elements in New York City (NYC) soils. Selected NYC pedons were analyzed by aqua regia microwave digestion and sequential chemical extraction as follows: water soluble (WS); exchangeable (EX); specifically sorbed/carbonate bound (SS/CAR); oxide-bound (OX); organic/sulfide bound (OM/S). Soils showed a range in properties (e.g., pH 3.9 to 7.4). Sum of total extractable (SUMTE) trace elements was higher in NYC parks compared to Bronx River watershed sites. NYC surface horizons showed higher total extractable (TE) levels compared to US non-anthropogenic soils. TE levels increased over 10 year in some of the relatively undisturbed and mostly wooded park sites. Surface horizons of park sites with long-term anthropogenic inputs showed elevated TE levels vs. subsurface horizons. Conversely, some Bronx River watershed soils showed increased concentrations with depth, reflective of their formation in a thick mantle of construction debris increasing with depth and intermingled with anthrotransported soil materials. Short-range variability was evident in primary pedons and satellite samples (e.g., Pb 253?±?143 mg/kg). Long-range variability was indicated by PbTE (348 versus 156 mg/kg) and HgTE (1 versus 0.3 mg/kg) concentrations varying several-fold in the same soil but in different geographic locations. Relative predominance of fractions: RES (37 %)?>?SS/CAR (22 %)?>?OX (20 %)?>?OM/S (10 %)?>?EX (7 %)?>?WS (4 %). WS and EX fractions were greatest for Hg (7 %) and Cd (14 %), respectively. RES was predominant fraction for Co, Cr, Ni, and Zn (41 to 51 %); SS/CAR for Cd and Pb (40 and 63 %); OM/S for Cu and Hg (36 and 37 %); and OX for As (59 %).  相似文献   

2.
The concentrations of selected heavy metals in the soil and vegetation in the immediate vicinity of a metal scrap recycling factory were determined in the dry and wet seasons using the Atomic Absorption Spectrophotometer. The results showed that the soil pH in all the sites indicated slight acidity (from 5.07 to 6.13), high soil organic matter content (from 2.08 to 5.60 %), and a well-drained soil of sandy loam textural composition. Soil heavy metal content in the dry season were 0.84–3.12 mg/kg for Pb, 0.26–0.46 mg/kg for Cd, 9.19–24.70 mg/kg for Zn, and 1.46–1.97 mg/kg for Cu. These values were higher than those in the wet season which ranged from 0.62–0.69 mg/kg for Pb, 0.67–0.78 mg/kg for Cd, 0.84–1.00 mg/kg for Zn, and 1.26–1.45 mg/kg for Cu. Except for cadmium in the dry season, the highest concentrations occurred in the northern side of the factory for all the elements in both seasons. An increase in the concentrations of the elements up to 350 m in most directions was also observed. There was no specific pattern in the level of the metals in the leaves of the plant used for the study. However, slightly elevated values were observed in the wet season (Pb 0.53 mg/kg, Cd 0.59 mg/kg, Cu 0.88 mg/kg) compared with the dry season values (Pb 0.50 mg/kg, Cd 0.57 mg/kg, Cu 0.83 mg/kg). This study showed that the elevated concentrations of these metals might be associated with the activities from the recycling plant, providing the basis for heavy metal pollution monitoring and control of this locality that is primarily used for agricultural purposes.  相似文献   

3.
Concentrations of ten heavy elements (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn), as well as the pH values, organic matter contents, and electrical conductivities were measured in the surface soil samples collected from 21 sites of urban areas in the city of Novi Sad, the second largest city in Serbia, its suburban settlement and the nearby villages. Range of the heavy element concentrations was from 0.16 mg/kg (for Hg) to 18,994 mg/kg (for Fe). Significantly higher Hg and Mn concentrations were observed in subgroups with rural and market garden samples in comparison to the subgroups with urban and grassland samples, respectively, while the contents of Pb found in the grasslands subgroup were significantly higher than in the subgroup with market garden soils. Only one sample of urban soil exceeded the maximum permissible value for Zn set by the relevant Serbian legislation. According to the Dutch soil quality standard, the Cd and Co concentrations in majority of the examined soils were higher than the target values for unpolluted soil. The content of Hg was above the target value in 52% of the samples, most of them belonging to the subgroup of market garden soils. The results for the Novi Sad city area were compared to the relevant data available for other cities in the Western Balkan Countries. Principal component analysis of data revealed seven outlying samples, while the rest of the analyzed samples were grouped together indicating similar heavy element patterns most probably due to mixed emission sources.  相似文献   

4.
Occurrence of phthalic acid esters in Gomti River Sediment, India   总被引:2,自引:0,他引:2  
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4–150 mg/kg and Cd at 0.02–20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C ul) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers’ fields. Lead and Cd concentration limits in soil were calculated by dividing C ul with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.  相似文献   

5.
An exploratory study of the area surrounding a historical Pb?CZn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n?=?87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 ?? g/g, Zn 870.25 ?? g/g, Mn 696.70 ?? g/g, and Cd 2.09 ?? g/g. Zn concentrations were significantly correlated with Cd (r?=?0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n?=?23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of ??total?? metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ?? Pb >?> Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.  相似文献   

6.
The heavy metal concentrations of soil and dust samples from roadside, residential areas, parks, campus sport grounds, and commercial sites were studied in Guangzhou, South China. Heavy metals in samples were determined by inductively coupled plasma atomic emission spectrophotometer following acidic digestion with HClO4 + HF + HNO3. High concentrations, especially of Cd, Pb, and Zn, were found with mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the urban dusts being 4.22?±?1.21, 62.2?±?27.1, 116?±?30, 31.9?±?12.6, 72.6?±?17.9, and 504?±?191 mg/kg dry weight, respectively. The respective levels in urban soils (0.23?±?0.19, 22.4?±?13.8, 41.6?±?29.4, 11.1?±?5.3, 65.4?±?40.2, and 277?±?214 mg/kg dry weight, respectively), were significantly lower. The integrated pollution index of six metals varied from 0.25 to 3.4 and from 2.5 to 8.4 in urban soils and dusts, respectively, with 61 % of urban soil samples being classified as moderately to highly polluted and all dust samples being classified as highly polluted. The statistical analysis results for the urban dust showed good agreement between principal component analysis and cluster analysis, but distinctly different elemental associations and clustering patterns were observed among heavy metals in the urban soils. The results of multivariate statistic analysis indicated that Cr and Ni concentrations were mainly of natural origin, while Cd, Cu, Pb, and Zn were derived from anthropogenic activities.  相似文献   

7.
This study was aimed to establish background and reference values of total heavy metals in soils from a representative area of Albania (Tirana). Thirty-eight soil samples collected from genetic horizons of major soil types of Tirana were analyzed for important physicochemical properties by standard methods and for total contents of Cd, Cr, Ni, Pb, Zn, and Cu by atomic absorption spectrometer, after extraction with aqua regia. The results showed that the total contents of Cd, Cr, Ni, Pb, Zn, and Cu in surface horizons varied widely with respective mean values of 0.3 (??0.6), 174.2 (??63.7), 305.9 (??133.0), 19.7 (??12.4), 95.5 (??26.3), and 42.7 (??6.8) mg/kg. The highest metal contents were found in two soils developed in limestone. The depth distribution of metals showed a tendency for accumulation of Cd and Pb in the surface horizons of three soils, suggesting that these metals partially come from anthropogenic inputs. Correlation analysis indicated that the metal contents of soils were controlled by soil properties, including pH, CaCO3, clay, organic matter, cation exchange capacity, and Fe oxides. The background values (given as the 90th percentile) were much higher than those reported in the literature, showing that the levels of respective metals were naturally higher. The total metal contents of some soils were above background levels, suggesting metal pollution. The reference values for all the analyzed metals were quite consistent with those of the Dutch system. The proposed background and reference values can be used to evaluate the soil pollution with these elements.  相似文献   

8.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

9.
Microelement (As, Cd, Cr, Cu, Ni, Pb, and Zn) concentrations were determined in the muscle, skin, gill, and liver tissues of Carassius auratus gibelio collected from subsidence pools at three different coal mines in the Huainan coalfield in China. The concentrations of elements in the water were within the allowable levels for raising fish. However, the higher levels of these metals in sediment may pose potential harm on fish. It was found that the concentrations of Cr, Ni, and Zn in all fish tissues were higher, while As, Cd, and Pb levels were relatively low. Microelement accumulation appeared to be more widespread in subsidence pools than that in natural water. Elements accumulated in fish tissues differently: the highest metal concentrations were generally found in the liver tissues of the fish analyzed, whereas the lowest were recorded in the muscles. The mean element concentrations in muscle tissue from C. auratus gibelio collected from subsidence pools (As, 0.16 mg/kg; Cd, 0.06 mg/kg; Cr, 6.21 mg/kg; Cu, 1.61 mg/kg; Ni, 3.88 mg/kg; Pb, 1.76 mg/kg; and Zn, 12.80 mg/kg dry weight) were far below the allowable limit of the hygienic standard in fish proposed by the Ministry of Health in China, suggesting that the fish were safe for human consumption. A health risk assessment also suggested there was no risk from the analyzed elements for inhabitants near the Huainan coalfield that consume fish.  相似文献   

10.
Extensive aquatic or semi-aquatic production of water spinach (Ipomoea aquatica Forssk.) for human consumption takes place in Southeast Asia. The aim of this study was to assess the concentrations of 38 elements in soil and water spinach cultivated under different degrees of wastewater exposure in Hanoi, Vietnam. The results showed no effect of wastewater use on the overall element concentrations in soil and water spinach. Mean soil concentrations for selected potentially toxic elements at the studied field sites had the following ranges 9.11–18.7 As, 0.333–0.667 Cd, 10.8–14.5 Co, 68–122 Cr, 34.0–62.1 Cu, 29.9–52.8 Ni, 32.5–67.4 Pb, 0.578–0.765 Tl and 99–189 Zn mg kg−1 dry weight (d.w.). In all samples Cd, Pb and Zn soil concentrations were below the Vietnamese Guideline Values (TCVN 7209-2002) for agricultural soils whereas As and Cu exceeded the guideline values. Maximum site element concentrations in water spinach were 0.139 As, 0.032 Cd, 0.135 Cr, 2.01 Cu, 39.1 Fe, 57.3 Mn, 0.16 Ni, 0.189 Pb and 6.01 Zn mg kg−1 fresh weight (f.w.). The site and soil content of organic carbon were found to have high influence on the water spinach element concentrations whereas soil pH and the total soil element concentrations were of less importance. The estimated average daily intake of As, Cd, Cu, Fe, Pb and Zn for adult Vietnamese consumers amounts to <11% of the maximum tolerable intake proposed by FAO/WHO for each element. It is assessed that the occurrence of the investigated elements in water spinach will pose low health risk for the consumers.  相似文献   

11.
The present study on heavy metal contamination in soil and their accumulation in edible part (leaves) and roots of Spinacia oleracea (Spinach) on irrigation with paper mill effluent (PME)/sewage revealed that there was significant increase in the nickel (Ni, +227.17 %) content of the soil irrigated with PME, whereas in the soil irrigated with sewage chromium (Cr, +274.84 %), iron (Fe, +149.56 %), and cadmium (Cd, +133.39 %), contents were increased appreciably. The value of enrichment factor (EF) for Ni (3.27) indicated moderate enrichment in PME-irrigated soil. The EF of Fe, zinc (Zn), Cd, and Cr were <2 in PME effluent-irrigated soil which showed deficiency of minimal enrichment. In sewage irrigated soil, EF value for Cr, Fe, and Cd indicated moderate enrichment, while the values for Zn and Ni indicated deficiency of minimal enrichment. Among various metallic concentrations, the maximum concentration of Fe was observed in leaves (400.12?±?11.47 mg/kg) and root (301.41?±?13.14 mg/kg) of S. oleracea after irrigation with PME, whereas the maximum concentrations of Fe was found in leaves (400.49?±?5.97 mg/kg) and root (363.94?±?11.37 mg/kg) of S. oleracea after irrigation with sewage for 60 days. The bioaccumulation factor value was found maximum for Cd (2.23) in the plants irrigated with PME while that of Fe (0.90) in the plants irrigated with sewage. The undiluted use of PME/sewage for irrigation increased the concentration of Cr, Cd, Zn, Ni, and Fe metals which were accumulated in S. oleracea, posing a potential threat to human health from this practice of irrigation.  相似文献   

12.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

13.
The concentrations of seven toxic metals (cadmium (Cd), nickel (Ni), chromium (Cr), arsenic (As), lead (Pb), copper (Cu), and zinc (Zn)) were determined in sediments and the soft tissues of a bivalve species (Meretrix lyrata) collected from the Tien Estuary in Tien Giang Province, South Vietnam. The total metal concentrations in sediments (mg/kg dry weight) increased as Cd (0.06) < Cu (5.0) < Pb (13.9) < As (16.3) < Ni (24) < Cr (50) < Zn (62). Speciation analysis revealed that these metals existed mainly in the residual fraction (43–94%), followed by the Fe-Mn oxide-bound (5–35%) and organic/sulfide-bound (0.6–9.2%) fractions. The metal concentrations in M. lyrata (mg/kg dry weight) were in the ranges of 1.3–1.9 (Cd), 1.5–2.8 (Ni), 1.8–3.4 (Cr), 11–16 (As), 0.3–0.6 (Pb), 6.9–8.7 (Cu), and 95–128 (Zn), which are safe for human consumption. The order of the mean biota-sediment accumulation factor (BSAF) of the metals in the non-residual fractions of the sediment for M. lyrata was Cd > Cu > As > Zn > Cr > Ni > Pb. The Risk Assessment Codes (RACs) suggest that the highest mobility of Cd (with RAC = 37%) poses greater environmental risk to aquatic biota. Correlation analysis results show that M. lyrata can be used as a biomonitor of Cd and Cu pollution in the exchangeable, acid-soluble, and non-residual sediment fractions.  相似文献   

14.
Zn, Cd, Cr, Hg, As (total), Cu, Pb, and Ni levels of the deepwater rose shrimp (Parapenaeus longirostris, Lucas 1846), which were collected from the Tekirda? coast of the Marmara Sea, were evaluated. The Marmara Sea is the recipient of discharges from both land-based sources and the Black Sea Bosphorus stream. There are large numbers of anthropogenic activities in the coastal region of the northern Marmara Sea that include urban effluent, discharges from touristic resorts, agricultural runoff, fishing, and transportation. Heavy metal contamination of water resources may cause critical health problems for the people living around these water bodies. In deepwater rose shrimp (P. longirostris), the highest concentration level detected for Zn was 22.4?±?24.4 mg/kg in winter 2012, Cd 0.106?±?0.01 mg/kg in summer 2012, Cr 0.77?±?0.05 mg/kg in winter 2012, Hg 0.18?±?0.04 mg/kg in summer 2011, As 9.93?±?1.4 mg/kg in spring 2012, Cu 25.48?±?0.3 mg/kg in winter 2012, Pb 2.12?±?0.8 mg/kg in spring, and Ni 19.25?±?7.1 mg/kg in spring. The values of heavy metal analysis were compared to both the Turkish Food Codex (TFC) limits and international standards for human consumption. The Pb, As, and Cu levels were found to be higher than the maximum allowable limits.  相似文献   

15.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

16.
以长沙某河库兼用型饮用水水源地一、二级保护区土壤为研究对象,于2018年8月采用网格布点法在一级和二级保护区分别布设3个和7个采样点,在水源地历史采样区布设5个采样点,探究土壤中Cd、Pb、Cr、Cu、Zn、Ni、Hg、As的含量分布及污染水平。结果表明:土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量均值分别为46.56、4.90、81.87、46.64、0.19、30.11、75.11、237.93 mg/kg。重金属元素含量均值超过农用地污染风险筛选值的样品占比排序为Cd (86.7%)>Zn (60%)>As (53.3%)>Cu (6.7%)=Pb (6.7%)。土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的单因子污染指数分别为1.55、16.34、0.41、0.47、0.08、0.30、0.63、0.95,主要为Cd、As污染。研究区土壤重金属综合污染指数为11.71,属重污染等级。水源地一级保护区、二级保护区、历史采样区2018年、历史采样区2014年土壤重金属综合污染指数分别为20.41、14.94、1.98、1.17。后期应加强对该饮用水水源地土壤中Cd、Pb、Cu、Zn、As的污染控制和治理。  相似文献   

17.
广东某含铊硫酸冶炼堆渣场土壤中重金属的污染特征   总被引:3,自引:1,他引:2  
选取广东某硫酸厂工业堆渣周围土壤样品,重点研究了土壤剖面T1、cd、Pb、Zn四种重金属元素总量及形态分布特征.研究结果表明,该废渣在自然淋滤条件下已经对周围土壤产生了T1、Cd、Pb、Zn污染,并且T1、Pb、Cd较Zn污染严重.形态分析表明,堆渣场周围土壤中这些重金属主要是以残渣态和铁锰氧化物(氢氧化物)结合态存在.外围土壤受到的这些重金属污染及对环境的潜在危害大于废渣下伏土壤,其中在堆渣下伏土壤中主要以富集为主,而外围土壤中主要以迁移为主,且已经向土壤深处约30cm处进行了迁移.这些重金属污染物在表层土壤中未达到饱和状态,将继续在下伏土壤表层发生累积作用并且使横向土壤受污染的范围进一步扩大.  相似文献   

18.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

19.
The concentrations of heavy metals in tench, pike-perch, and common carp fish caught in four different seasons from Damsa dam lake (Nev?ehir) were determined. Heavy metal contents of fishes changed depending on seasons. The highest Al (20.894 mg/kg) in tench was established in winter, and the lowest Al (1.605 mg/kg) was determined in summer. Fe content of tench fish changed between 112.906 mg/kg (autumn) and 31.207 mg/kg (spring). In addition, Zn contents of tench were found between 36.0323 mg/kg (summer) and 430.586 mg/kg (winter). The results indicate that concentrations of Cu of tench varied from 0.1934 mg/kg (winter) to 15.422 mg/kg (autumn). Results indicate that concentrations varied from 2.923 mg/kg (autumn) to 32.078 mg/kg (summer) with a mean of 11.1893 mg/kg for Al; 0.2483 mg/kg (spring) to 3.3088 mg/kg (autumn) with a mean of 1.6189 mg/kg for Ni; 0.5325 mg/kg (spring) to 0.845 mg/kg (autumn) with a mean of 0.7234 for Pb; and 7.0464 mg/kg (winter) to 253.686 mg/kg (summer) with a mean of 133.6348 for Zn. In common carp, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, Se, Ga, and Te contents were determined as 3.9623 mg/kg; 0.1293, 0.2336, 0.0526, 0.1543, 4.2406, 0.726, 1.797, 0.6216, 6.8536, 0.1783, 0.7876, and 0.371 mg/kg in autumn, respectively.  相似文献   

20.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号