首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
透水混凝土路面对径流水量削减试验   总被引:1,自引:1,他引:0  
透水混凝土路面作为低影响开发技术之一,对雨洪的管理与控制具有重要作用。对透水混凝土路面对径流的控制作用进行试验,结果表明:基于设计路面和北京降雨参数,降雨历时分别为30,60,120 min时,透水混凝土路面对径流总量的削减率分别达到60%、55%和40%以上,对洪峰流量的削减率分别达到65%、63%和40%以上;降雨重现期从1年增到100年,产流延迟时间从13 min降至5 min。试验表明,透水混凝土路面的雨量径流系数在0.18~0.54,远小于普通混凝土路面的雨量径流系数0.91。结果表明,透水混凝土路面对延迟产流时间、削减径流水量、削减洪峰流量以及降低径流系数具有很好的作用,可以为该低影响开发技术在国内的应用设计提供参考。  相似文献   

2.
通过使用人工模拟降雨装置和路面装置,试验研究了径流污染物在透水混凝土路面各结构层的去除情况。结果表明,透水混凝土面层和多孔隙水泥稳定基层对污染物的去除率分别为30%~50%、15%~30%,而级配碎石基层对污染物的去除率不足10%。据分析主要原因为透水混凝土面层和多孔隙水泥稳定基层为多孔介质,并含有水泥,由于水泥自身特性,污染物通过截留过滤、物理和化学吸附以及生物作用被去除。通过阐明各结构层除污的情况为透水混凝土的应用提供了理论依据。  相似文献   

3.
高地下水位地区透水停车场的水文控制效果   总被引:3,自引:1,他引:2  
为确定高地下水位地区透水铺装对路面径流的水文控制效果,在上海市区建造了4个实验性透水铺装单元与1个不透水铺装对照,其中3个为设有防水衬底的不透型设施分别为透水混凝土铺装(设施Ⅰ)、水泥稳定碎石基层/缝隙透水砖面层(设施Ⅱ)、碎石基层/缝隙透水砖面层(设施Ⅲ),1个普通缝隙透水砖铺装(设施Ⅳ),以及1个不透水混凝土对照(设施0).历时1年监测了实际降雨条件下4种实验设施的表面径流、排水管出流流量及表面渗透速率,考察不同设施的径流总量削减率、峰值削减及峰现延迟能力.结果表明,缝隙透水砖面层的表面稳定渗透速率明显小于透水混凝土面层,使用1年后,2种面层表面稳定渗透速率均明显下降;4种设施的表面产流均无显著差异;3种不透型设施的就地消纳水量能力均较弱,年径流总量控制率分别为24.2%、28.5%、28.4%,排水管不发生出流的控制降雨量分别为5.2 mm、7.8 mm、7.8 mm;设施Ⅰ的峰值削减与峰现延迟效果弱于设施Ⅱ及设施Ⅲ,且3种设施的峰值削减率和峰现延迟时间与降雨强度呈现显著负相关性.  相似文献   

4.
王二松  宫永伟  周国华 《环境工程》2023,(12):48-53+115
以天津市某海绵型建筑小区为研究对象,采用在线监测与模型模拟相结合的方法,开展小区尺度海绵化改造对径流水量水质效果评估的量化研究。构建暴雨雨洪管理模型,利用实测降雨、水量、水质数据进行模型关键参数的率定与验证,在设计降雨和实际场次降雨、多年连续降雨情景下,模拟分析海绵化改造对径流总量、径流峰值、径流污染的控制效果及差异。结果表明,海绵型建筑小区在2~10年一遇设计降雨重现期下,径流总量控制率为64.43%~74.10%,径流体积削减率为31.27%~40.09%,监测排口处径流峰值削减率为40.57%~41.40%。在55场实际降雨情景下,径流总量控制率为58.29%~100.00%,径流污染削减率为40.93%~83.05%。同时,总降雨量、最大小时降雨量是影响径流总量、径流污染控制效果最主要的降雨特征,存在较强的负相关(P<0.01)。多年连续降雨情景下,年径流总量控制率为78.61%,年径流体积削减率为37.18%,年径流污染削减率为45.16%。该研究成果可为科学定量评估海绵型建筑小区径流控制效果提供参考。  相似文献   

5.
以某新建建筑小区为研究对象,通过构建低影响开发雨水排水系统,实现了雨水径流总量减排和峰值削减的多目标控制。采用同场次降雨对比分析的方法,在该小区6个排口(A~F)分别设置监测点,并选择下垫面类型组成相似的传统建筑小区排口(G)作为对比监测点。通过7场典型降雨监测数据的分析表明:与传统建筑小区相比,低影响开发建筑小区场次雨水径流外排总量削减率为12.1%~100%,场次雨水径流污染物(以SS计)总量削减率为69.6%~100%,峰值削减率为12.3%~100%。通过建立数学模型对典型年降雨数据进行了连续模拟,结果表明:低影响开发建筑小区平均径流外排总量削减率为77.3%,污染物总量削减率为66.4%。因此,监测和模拟结果均表明低影响开发雨水系统可有效控制雨水径流的外排总量和污染负荷。研究结果可为我国今后海绵型建筑小区建设提供技术支撑。  相似文献   

6.
不同低影响开发(LID)技术组合对于控制城市面源污染具有重要应用价值,但是其对城市面源污染形成过程(污染物累积-冲刷-输送)的影响及污染负荷削减效果的评估鲜见报道.本研究以深圳市国际低碳城为例,分析了6场降雨事件下透水路面-生物滞留池组合对城市面源晴天污染物累积量、降雨径流冲刷量、不同LID设施的削减量、溢流的负荷量的影响.结果表明,研究区地表颗粒物平均累积量为(15.80±3.79)g·m~(-2),粒径250μm的颗粒物质量占比约为65.14%;6场不同强度降雨对地表颗粒物的平均冲刷率为17.15%,粒径105μm的颗粒物冲刷率为62.71%~74.94%;降雨冲刷地表径流污染物SS、TN、TP的平均污染负荷分别为2.02、0.025、0.001 3 g·m~(-2);透水路面下渗、过滤作用对污染物SS、TN、TP的去除率分别为70.26%、46.29%、19.27%;生物滞留池对径流二次净化去除率分别为85.25%、20.22%、70.27%;入河径流污染物SS、TN、TP的平均污染负荷分别为0.08、0.011、0.000 3 g·m~(-2),是地表冲刷污染负荷的4.05%、43.47%、24.39%.透水路面-生物滞留池组合应用对道路径流中污染物的净化效果显著.通过定量化表征透水路面-生物滞留池组合应用道路的城市面源污染形成过程,以期为城市面源污染形成过程的污染负荷估算及LID工程绩效评估提供科学依据,为LID在国内的推广应用和海绵城市设计提供参考.  相似文献   

7.
传输型植被浅沟构造简单、经济实用,是海绵城市建设的重点推广技术之一。通过在深圳光明新区国家LID雨水综合利用示范区的现场监测研究,探讨了中到大雨下传输型植被浅沟对污染物质以及雨水径流总量、峰值流量的实际控制效果。结果表明,中到大雨下,传输型植被浅沟对SS、COD、NH_4~+-N、NO_3~--N、TN和TP的去除率分别为28.91%~67.29%、37.76%~64.57%、21.84%~34.65%、19.39%~25.99%、23.60%~39.97%和31.49%~48.83%,对径流总量的削减率为50.9%~66.3%,且径流峰值较降雨峰值滞后5~9 min;若设计重现期取1 a,深圳的传输型植被浅沟可接纳相当于自身面积1.79倍硬质路面所产生的径流。  相似文献   

8.
模拟技术是城市低影响开发雨水设施规划设计和研究的重要方法,采用城市暴雨处理及分析集成模型系统(SUSTAIN)对某市A地块的低影响开发雨水设施规划进行研究,分析了低影响开发雨水设施在不同降雨重现期条件下的峰值径流量、径流总量及径流系数的削减效果。结果表明,按照一定比例设置的绿色屋顶、透水铺装、下凹绿地、雨水花园、干草沟等低影响开发雨水设施可以通过下渗和滞蓄作用削减降雨峰值径流量和径流总量,降低了地面径流系数,其中1~5年一遇降雨的径流量和峰值流量基本达到100%削减,10~100年一遇的降雨则有不同程度削减,可显著减少下游渠道和市政管网的外排水量,缓解城市排水系统和河道泄洪的负荷,为城市低影响开发雨水设施的有效利用提供参考。  相似文献   

9.
随着海绵城市的快速发展,透水砖铺装在实际工程中得到了广泛应用,但其对雨水径流热污染控制效果尚缺乏系统研究。采用人工模拟降雨方法,以不透水沥青路面为参考,研究了透水砖铺装系统对雨水径流温度的削减效果,具体包括透水砖铺装表面外排雨水径流温度、渗透出水温度以及各结构层的温度变化。实验结果表明:当重现期为5年一遇,透水砖铺装面层初始温度为35,42,47 ℃时,与不透水沥青相比,透水砖铺装面层外排径流温度可削减1.4~1.8 ℃,且面层初始温度越高,外排雨水径流温度越高,渗透出水温度也越高;透水砖铺装各结构层可削减渗透部分雨水径流的温度,渗透出水温度相对于径流温度降低3.5~5.2 ℃;降雨强度对透水砖面层外排雨水径流温度有显著影响,而对渗透出水温度影响较小。因此,透水砖铺装可有效削减雨水径流对城市水体的热污染。  相似文献   

10.
研究了不同类型透水铺装系统对径流重金属的去除效能和机制。在实验室搭建了3种典型透水铺装系统(陶瓷透水砖、透水沥青和透水混凝土),研究了其对5种常见径流重金属(Cu、Zn、Cd、Mn、Ni)的去除效能和机制,并分析了不同降雨重现期(2,3,5年)对透水铺装系统去除径流重金属的影响。结果表明:3种透水铺装系统对5种径流重金属都有较好去除效果,其中陶瓷透水砖的去除效果最好,且去除效果最稳定。比较而言,陶瓷透水砖与透水沥青能够在短时间内降低重金属的浓度,透水混凝土达到吸附点位的速度较慢并有一定波动,特别是在不同降雨重现期下波动更加明显。在不同重现期下,各设施表现出不同性能,影响程度为2年>5年>3年,即整体在重现期为3年的降雨条件下有着较为优异且较为稳定的去除性能,而过大或过小的流量都会使透水铺装去除重金属的性能有所降低。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号