首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To forestall, control, and mitigate the detrimental effects of aluminium dust, a 20-L near-spherical dust explosion experimental system and an HY16429 type dust-cloud ignition temperature test device were employed to explore the explosion characteristics of micron-sized aluminium powder under different ignition energies, dust particle sizes, and dust cloud concentration (Cdust) values; the minimum ignition temperature (MIT) values of aluminium powder under different dust particle sizes and Cdust were also examined. Flame images at different times were photographed by a high-speed camera. Results revealed that under similar dust-cloud concentrations and with dust particle size increasing from 42.89 to 141.70 μm, the MIT of aluminium powder increased. Under various Cdust values, the MIT of aluminium dust clouds attained peak value when concentrations enhanced. Furthermore, the increase of ignition energy contributed to the increase of the explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex]. When dust particle size was augmented gradually, the Pex and (dP/dt)ex attenuated. Decreasing particle size lowered both the most violent explosion concentration and explosive limits.  相似文献   

2.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   

3.
Deflagration explosions of coal dust clouds and flammable gases are a major safety concern in coal mining industry. Accidental fire and explosion caused by coal dust cloud can impose substantial losses and damages to people and properties in underground coal mines. Hybrid mixtures of methane and coal dust have the potential to reduce the minimum activation energy of a combustion reaction. In this study the Minimum Explosion Concentration (MEC), Over Pressure Rise (OPR), deflagration index for gas and dust hybrid mixtures (Kst) and explosive region of hybrid fuel mixtures present in Ventilation Air Methane (VAM) were investigated. Experiments were carried out according to the ASTM E1226-12 guideline utilising a 20 L spherical shape apparatus specifically designed for this purpose.Resultsobtained from this study have shown that the presence of methane significantly affects explosion characteristics of coal dust clouds. Dilute concentrations of methane, 0.75–1.25%, resulted in coal dust clouds OPR increasing from 0.3 bar to 2.2 bar and boosting the Kst value from 10 bar m s−1 to 25 bar m s−1. The explosion characteristics were also affected by the ignitors’ energy; for instance, for a coal dust cloud concentration of 50 g m−3 the OPR recorded was 0.09 bar when a 1 kJ chemical ignitor was used, while, 0.75 bar (OPR) was recorded when a 10 kJ chemical ignitor was used.For the first time, new explosion regions were identified for diluted methane-coal dust cloud mixtures when using 1, 5 and 10 kJ ignitors. Finally, the Le-Chatelier mixing rule was modified to predict the lower explosion limit of methane-coal dust cloud hybrid mixtures considering the energy of the ignitors.  相似文献   

4.
Coal dust explosion occurs easily in the coal chemical industry. To ensure safety in industrial production, NaY zeolite was used as carrier modified with Fe ions and combined with ammonium polyphosphate (APP) to prepare a novel composite suppressant for coal dust explosion. The explosion suppression performance of novel APP/NaY–Fe suppressant was investigated by flame propagation inhibition experiments. The results show that Fe ion modification can effectively improve the explosion suppression performance. By increasing content, the explosion suppression performance of the explosion suppressant increases. The maximum explosion pressure Pmax of coal dust drops to 0.13 MPa when 50 wt% explosion suppressants were added, and the coal dust explosion cannot continue to expand. Complete suppression of explosion could be achieved by adding 66 wt% explosion suppressants. Combined with XRD, SEM and TG results, the explosion suppression mechanism was proposed. The novel explosion suppressant has high thermal stability, good dispersity and its explosion suppression components distribute uniformly. It shows good explosion suppression performance by the synergistic effect among explosion-suppression components.  相似文献   

5.
The main risk factors from methane explosion are the associated shock waves, flames, and harmful gases. Inert gases and inhibiting powders are commonly used to prevent and mitigate the damage caused by an explosion. In this study, three inhibitors (inert gas with 8.0 vol% CO2, 0.25 g/L Mg(OH)2 particles, and 0.25 g/L NH4H2PO4 particles) were prepared. Their inhibiting effects on methane explosions with various concentrations of methane were tested in a nearly spherical 20-L explosion vessel. Both single-component inhibitors and gas–particle mixtures can substantially suppress methane explosions with varying degrees of success. However, various inhibitors exhibited distinct reaction mechanisms for methane gas, which indicated that their inhibiting effects for methane explosion varied. To alleviate amplitude, the ranking of single-component inhibitors for both explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex] was as follows: CO2, NH4H2PO4 particles, and Mg(OH)2 particles. In order of decreasing amplitude, the ranking of gas‒particle mixtures for both Pex and (dP/dt)ex was as follows: CO2–NH4H2PO4 mixture, CO2‒Mg(OH)2 mixture, and pure CO2. Overall, the optimal suppression effect was observed in the system with the CO2–NH4H2PO4 mixture, which exhibited an eminent synergistic effect on methane explosions. The amplitudes of Pex with methane concentrations of 7.0, 9.5, and 11.0 vol% decreased by 37.1%, 42.5%, and 98.6%, respectively, when using the CO2–NH4H2PO4 mixture. In addition, an antagonistic effect was observed with CO2‒Mg(OH)2 mixtures because MgO, which was generated by the thermal decomposition of Mg(OH)2, can chemically react with water vapor and CO2 to produce basic magnesium carbonate (xMgCO3·yMg(OH)2·zH2O), thereby reducing the CO2 concentration in a reaction system. This research revealed the inhibiting effects of gas‒particle mixtures (including CO2, Mg(OH)2 particles, and NH4H2PO4 particles) on methane explosions and provided primary experimental data.  相似文献   

6.
The explosion characteristic parameters of polyethylene dust were systematically investigated. The variations in the maximum explosion pressure (Pmax), explosion index (Kst), minimum ignition energy (MIE), minimum ignition temperature (MIT), and minimum explosion concentration (MEC) of dust samples with different particle sizes were obtained. Using experimental data, a two-dimensional matrix analysis method was applied to classify the dust explosion severity based on Pmax and Kst. Then, a three-dimensional matrix was used to categorize the dust explosion sensitivity based on three factors: MIE, MIT, and MEC. Finally, a two-dimensional matrix model of dust explosion risk assessment was established considering the severity and sensitivity. The model was used to evaluate the explosion risk of polyethylene dust samples with different particle sizes. It was found that the risk level of dust explosion increased with decreasing particle size, which was consistent with the actual results. The risk assessment method can provide a scientific basis for dust explosion prevention in the production of polyethylene.  相似文献   

7.
The dust explosion behaviors induced by two different combustion mechanisms (homogeneous and heterogeneous mechanisms) were comparatively investigated, based on the experiments under different dust concentrations, particle sizes and initial pressures in Siwek 20-L chamber. Based on the thermo-gravimetric analysis (TGA), sweet potato dust and magnesium dust were selected as the representative dusts with homogeneous and heterogeneous combustion mechanisms, respectively. Experiments find that these two dusts have different behaviors in the explosion kinetics due to different combustion mechanisms. For sweet potato dust, the explosion pressure pmax, the pressure rise rate (dp/dt)max and the combustion fraction η exhibit similar variation trends as dust concentration increases and they all reach to the maximum values at the worst-case concentration; while for magnesium dust, the variation of (dp/dt)max is somewhat different from that of pmax, that is, the (dp/dt)max will achieve the maximum at the concentration higher than the worst-case and keep stabilized with further increase of dust concentration. As the particle size decreases, the (dp/dt)max for sweet potato dust will increasingly rise and gradually approach to a stabilized value, but for magnesium dust, the increase of (dp/dt)max becomes pronounced only in the range of smaller particle sizes. To account the effect of initial pressure on pmax under different combustion mechanisms, a dimensionless pressure PR was introduced to denote the relative intensity of explosion. It is found that, for sweet potato dust, the increased initial pressure will promote the explosion process (or with high PR) for the dust cloud with high concentration due to the augmented oxygen concentration, but for the dust cloud with low concentration, the increased initial pressure will suppress the explosion process due to the increased resistance in devolatilization. For magnesium dust, the rise of initial pressure will generally promote the explosion process even for the dust cloud with low concentration; however, in the case of small particle size, the promotion of increased initial pressure to the explosion process is not so pronounced.  相似文献   

8.
In underground coal mining, methane explosions often can cause tremendous disasters. In the meantime, carbon monoxide (CO), generated during the process of coal oxidation, may appear in the air. Therefore, the explosion characteristics of the mixture of CH4 and CO must be investigated to prevent gas explosion accidents in coal mines. We conducted experiments by using a 20-L nearly spherical gas explosion testing device. The software FLACS was used to simulate the explosion of the mixture of CH4 and CO at various mixing concentrations, and the simulation results corresponded to experimental results. With the increase of CO concentration, both upper and lower explosive limits of CH4 decreased. On the whole, the explosion characteristic parameters of CH4 and the mixture are similar. When CH4 concentration was below the stoichiometric concentration, the addition of CO could promote the intensity of gas explosion; oppositely, excessive CO would inhibit the gas explosion reaction. The inhibitory effects become more significant as the concentration of CH4 increases.  相似文献   

9.
Gas explosion is the leading accident in underground coal mining in China. Using the self-improved 20 L spherical experimental system, the impacts of 8% CO2, ABC powder at various concentrations and mixture of them on the suppression of mine gas explosion were investigated. The results indicate that cooperative synergism exists between ABC powder and CO2. Their combination has a better effect than each of the two components acting alone, especially for the gas of larger concentration. When 0.25 g/L ABC powder was mixed with 8% CO2, the explosion limits were reduced by about 55%, the time to reach the peak explosion pressure was prolonged 3.56 times on average. Meanwhile, the maximum explosion pressure declined on an average of 59.4% and the maximum explosion overpressure rising rate decreased on an average of 91.1%. A combination of 0.20 g/L ABC powder and 8% CO2 completely suppressed 11% gas explosion. The explosion suppression mechanism of CO2 and ABC powder were probed theoretically. CO2 plays a key part in the whole explosion processes, and it can effectively suppress the forward reaction between gas and oxygen. While it is during the middle-later period of explosion processes that ABC powder plays a critical role. The particles decomposed from heated ABC powder such as nitrogen and phosphor will react with free radicals rapidly. Besides, atoms as N, P are capable of participating in chain reaction and reacting with active groups, significantly suppressing the gas explosion.  相似文献   

10.
Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER.  相似文献   

11.
Explosion characteristics of micron- and nano-size magnesium powders were determined using CSIR-CBRI 20-L Sphere, Hartmann apparatus and Godbert-Greenwald furnace to study influence of particle size reduction to nano-range on these. The explosion parameters investigated are: maximum explosion pressure (Pmax), maximum rate of pressure-rise (dP/dt)max, dust explosibility index (KSt), minimum explosible concentration (MEC), minimum ignition energy (MIE), minimum ignition temperature (MIT), limiting oxygen concentration (LOC) and effect of reduced oxygen level on explosion severity. Magnesium particle sizes are: 125, 74, 38, 22, 10 and 1 μm; and 400, 200, 150, 100, 50 and 30 nm. Experimental results indicate significant increase in explosion severity (Pmax: 7–14 bar, KSt: 98–510 bar·m/s) as particle size decreases from 125 to 1 μm, it is maximum for 400 nm (Pmax: 14.6 bar, KSt: 528 bar·m/s) and decreases with further decrease of particle size to nano-range 200–30 nm (Pmax: 12.4–9.4 bar, KSt: 460–262 bar·m/s) as it is affected by agglomeration of nano-particles. MEC decreases from 160 to 30 g/m3 on decreasing particle size from 125 to 1 μm, its value is 30 g/m3 for 400 and 200 nm and 20 g/m3 for further decrease in nano-range (150–30 nm). MIE reduces from 120 to 2 mJ on decreasing the particle size from 125 to 1 μm, its value is 1 mJ for 400, 200, 150 nm size and <1 mJ for 50 and 30 nm. Minimum ignition temperature is 600 °C for 125 μm magnesium, it varies between 570 and 450 °C for sizes 38–1 μm and 400–350 °C for size range 400–30 nm. Magnesium powders in nano-range (30–200 nm) explode less violently than micron-range powder. However, likelihood of explosion increases significantly for nano-range magnesium. LOC is 5% for magnesium size range 125–38 μm, 4% for 22–1 μm, 3% for 400 nm, 4% for 200, 150 and 100 nm, and 5% for 50 and 30 nm. Reduction in oxygen levels to 9% results in decrease in Pmax and KSt by a factor of 2–3 and 4–5, respectively, for micron as well as nano-sizes. The experimental data presented will be useful for industries producing or handling similar size range micron- and nano-magnesium in order to evaluate explosibility of their magnesium powders and propose/design adequate safety measures.  相似文献   

12.
Flameproof enclosures having internal electrical components are generally used in classified hazardous areas such as underground coalmines, refineries and places where explosive gas atmosphere may be formed. Flameproof enclosure can withstand the pressure developed during an internal explosion of an explosive mixture due to electrical arc, spark or hot surface of internal electrical components. The internal electrical component of a flameproof enclosure can form ignition source and also work as an obstacle in the explosion wave propagation. The ignition source position and obstacle in a flameproof enclosure have significant effect on explosion pressure development and rate of explosion pressure rise. To study this effect three cylindrical flameproof enclosures with different diameters and heights are chosen to perform the experiment. The explosive mixture used for the experiment is stoichiometric composition of methane in air at normal atmospheric pressure and temperature.It is observed that the development of maximum explosion pressure (Pmax) and maximum rate of explosion pressure rise (dp/dt)ex in a cylindrical flameproof enclosure are influenced by the position of ignition source, presence of internal metal or non-metal obstacles (component). The severity index, KG is also calculated for the cylindrical enclosures and found that it is influenced by position of ignition source as well as blockage ratios (BR) of the obstacles in the enclosures.  相似文献   

13.
The coupling effects of venting and CO2 inerting on stoichiometric methane-air mixture explosions were investigated in an isolated vessel and interconnected vessels. The results indicate that venting mitigates the explosion intensity, especially for small vessels. For vessels connected by pipes, a venting design following EN 14994 (2007) and NFPA 68 (2013) could not meet the venting requirements. For an isolated big vessel and interconnected vessels, increasing the CO2 volume fraction (Φ) from 0 to 15.0 vol% decreased the maximum explosion overpressure (Pmax) and maximum rate of overpressure rise ((dP/dt)max) and delayed tmax. For closed interconnected vessels, Pmax varied approximately linearly with Φ. For both isolated vessel and interconnected vessels, the coupling effects of venting and CO2 inerting on methane-air explosion were more efficient than those of individual mitigative method (that is, venting alone or CO2 inerting alone).  相似文献   

14.
To identify a superior explosion suppressant for Al-Mg alloy dust explosion, the inhibition effects of Al(OH)3 and Mg(OH)2 powders on Al-Mg alloy explosion were investigated. A flame propagation suppression experiment was carried out using a modified Hartmann tube experimental system, an explosion pressure suppression experiment was carried out using a 20-L spherical explosion experimental system, and the suppression mechanisms of the two kinds of powders on Al-Mg alloy dust explosion were further investigated. The results demonstrate that by increasing the mass percentages of Al(OH)3 and Mg(OH)2, the flame height, flame propagation speed and explosion pressure of deflagration can be effectively reduced. When 80% Mg(OH)2 powder was added, the explosion pressure was reduced to less than 0.1 MPa, and the explosion was restrained. Due to the strong polarity of the surface of Mg(OH)2, agglomeration easily occurs; hence, when the added quantity is small, the inhibition effect is weaker than that of Al(OH)3. Because the Mg(OH)2 decomposition temperature is higher, the same quantity absorbs more heat and exhibits stronger adsorption of free radicals. Therefore, to fully suppress Al-Mg alloy explosion, the suppression effect of Mg(OH)2 powder is better.  相似文献   

15.
This paper mainly studied the influence of particle size distribution on the explosion risk of aluminum powder under the span of large particle size distribution. The measurement was carried out with the 20 L explosion ball and the Hartmann tube. The statistical analysis was used to analyze the relevance between the parameters of explosion risk and the particle size parameters. Test results showed that with the increase of particle size, the sensitivity parameter increases and the intensity parameter deceleration decreases. The effect of particle size change on MEC and MIE of small particle size aluminum powder is relatively small but greater impact on Pm and (dP/dt)m. The small particle size components greatly increasing the sensitivity of the explosion and accelerating the rate of the explosion reaction; while the large particle size component contributes to the maximum explosion pressure. D3,2 particle size dust determines the risk of aluminum powder explosion.  相似文献   

16.
For the development of a standardized method for measuring the explosion safety characteristics of combustible hybrid dust/vapor mixtures, the influence of the ignition delay time needs to be investigated. The ignition delay time, defined as the time between the injection of dust and the activation of the ignition source, is related to the turbulence of the mixture and thus to the pressure rise rate. The ignition source for pure vapors, however, has to be activated in a quiescent atmosphere according to the standards. Nevertheless, when measuring the explosion safety characteristics of hybrid mixtures, it is important that the dust be in suspension around the igniter. Like pure dust/air mixtures, hybrid dust/vapor/air mixtures need to be ignited in a turbulent atmosphere to keep the dust in suspension.This work will therefore investigate the influence of ignition delay times on the severity of hybrid explosions. It was generally found that at shorter ignition delay times, (dp/dt)ex increased due to higher turbulence and decreases as the dust sinks to the bottom of the 20 L-sphere. This effect is more pronounced for hybrid mixtures with higher vapor content compared to dust content.  相似文献   

17.
The key objective of this paper is the presentation of a new risk assessment tool for underground coal mines based on a simplified semi-quantitative estimation and assessment method.In order to determine the risk of explosion of any work process or activity in underground coal mines it is necessary to assess the risk. The proposed method is based on a Risk Index obtained as a product of three factors: frequency of each individual scenario Pucm, associated severity consequences Cucm and exposure time to explosive atmospheres Eucm. The influence of exposure time is usually not taken into account up to now. Moreover, the exposure to explosive atmospheres may affect factors of hazardous event probability as much as its consequences. There are many definitions of exposure to explosive atmospheres but in the case of underground coal mines the exposure is defined as frequency risk of firedamp and coal dust. The risk estimation and risk assessment are based on the developed of a risk matrix.The proposed methodology allows not only the estimation of the explosion risk but also gives an approach to decide if the proposal investment is well-justified or not in order to improve safety.  相似文献   

18.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

19.
The inhibition effect of heptafluoropropane (CF3CHFCF3) on methane explosions under different inhibitor concentrations in a closed vessel was studied. A high-speed camera and a pressure sensor were adopted respectively to record flame propagation characteristics and pressure data. Results indicate that the relationship between flame propagation and pressure rising was correlated. As the equivalent ratio (ϕ)≤1, the pressure presented a trend of rising firstly and then decreasing with increasing CF3CHFCF3 concentration, and it was found that there existed a critical concentration for pressure decrease. As ϕ > 1, the pressure exhibited a decreasing trend. Although the pressure appeared to seemingly increase, the moment that the pressure began to rise (trise) and the moment that the maximum explosion overpressure appeared (tPmax) were obviously delayed. The average rate of pressure rise ((dP/dt)ave) was decreased as the concentration of CF3CHFCF3 increased. It indicates that CF3CHFCF3 can effectively reduce the explosion reaction rate. The critical concentration of CF3CHFCF3 for complete inhibition was determined. Meanwhile, the synergy of CF3CHFCF3-inert gas can improve the inhibition effect. Compared with CF3CHFCF3–N2, the synergy of CF3CHFCF3–CO2 presented a better inhibition effect, and the inhibition effect was increased with increasing inert gas concentration. And the mechanisms of physical and chemical effects on explosion inhibition were analyzed.  相似文献   

20.
Accurate determination of explosion severity parameters (pmax, (dp/dt)max, and KSt) is essential for dust explosion assessment, identification of mitigation strategy, and design of mitigation measure of proper capacity. The explosion severity parameters are determined according to standard methodology however variety of dust handled and operation circumstances may create practical challenge on the optimal test method and subsequent data interpretation. Two methods are presented: a statistical method, which considers all test results in determination of explosion severity parameters and a method that corrects the results for differences of turbulence intensity. The statistical method also calculates experimental error (uncertainty) that characterises the experimental spread, allows comparison to other dust samples and may define quality determination threshold. The correction method allows to reduce discrepancies between results from 1 m3 vessel and 20-l sphere caused by difference in the turbulence intensity level. Additionally new experimental test method for difficult to inject samples together with its analysis is described. Such method is a versatile tool for explosion interpretation in test cases where different dispersion nozzle is used (various turbulence level in the test chamber) because of either specific test requirements or being “difficult dust sample”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号