首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论化学放热系统的热稳定性和临界条件,用化学反应物无消耗的假设推导化学放热系统热失控(热爆炸)时的动力学参数临界值,得到热失控的判据、临界点火温度和熄火温度。提出用系统安全指数概念来评价放热反应系统发生热爆炸的潜在危险性,分析化学放热系统的平衡域。用硝酸甲酯分解爆炸实例,说明如何利用安全指数对具有热爆炸可能性的系统的潜在危险性进行定量评价,其预测结果与实验结果一致。  相似文献   

2.
A systematic approach to the assessment of thermal risks linked with the performance of exothermal reactions at industrial scale was proposed a long time ago. The approach consisted of a runaway scenario starting from a cooling failure and a classification of these scenarios into criticality classes. In the mean time these tools became quite popular and many chemical companies use them. Recently, the international standard IEC 61511 required the use of protection systems with reliability depending on the risk level. Since the criticality classes were developed as a tool for the choice of risk reducing measures as a function of the criticality, it seems obvious that the criticality classes may be used in the context of the standard IEC 61511, which provides a relation between the risk level and the reliability of protection systems.Firstly, the runaway scenario and the criticality classes will be shortly described. Secondly, the assessment criteria for severity and probability of occurrence of a runaway scenario will be described together with the required data and their interpretation in terms of risk. Thirdly, the assessment procedure is exemplified for the different criticality classes. Finally, the design of protection measures against runaway and the required IPL and SIL are based on the risk assessment obtained from the criticality classes. This approach allows minimising the required data set for the safety assessment and for the definition of the protection system designed in order to avoid the development of the runaway.  相似文献   

3.
Thermal runaway hazard assessment provides the basis for comparing the hazard levels of different chemical processes. To make an overall evaluation, hazard of materials and reactions should be considered. However, most existing methods didn't take the both into account simultaneously, which may lead the assessment to a deviation from the actual hazard. Therefore, an integrated approach called Inherent Thermal-runaway Hazard Index (ITHI) was developed in this paper. Similar to Dow Fire and Explosion Index(F&EI) function, thermal runaway hazard of chemical process in ITHI was the product of material factor (MF) and risk index (RI) of reaction. MF was an indicator of material thermal hazards, which can be determined by initial reaction temperature and maximum power density. RI, which was the product of probability and severity, indicated the risk of thermal runaway during the reaction stage. Time to maximum rate under adiabatic conditions and criticality classes of scenario were used to indicate the runaway probability of the chemical process. Adiabatic temperature rise and heat of the desired reaction and secondary reaction were used to determine the severity of runaway reaction. Finally, predefined hazard classification criteria was used to classify and interpret the results obtained by this method. Moreover, the method was validated by case studies.  相似文献   

4.
Thermal safety and risk of accidents are still challenging topics in the case of batch reactors carrying exothermic reactions. In the present paper, the authors develop an integrated framework focusing on defining the governing parameters for the thermal runaway and evaluating the subsequent risk of accident. A relevant set of criteria are identified in order to find the prior conditions for a thermal runaway: failure of the cooling system, critical temperature threshold, successive derivatives of the temperature (first and second namely) vs. time and no detection in due time (reaction time) of the runaway initiation. For illustrative purposes, the synthesis of peracetic acid (PAA) with hydrogen peroxide (HP) and acetic acid (AA) is considered as case study. The critical and threshold values for the runaway accident are identified for selected sets of input data. Under the conditional probability of prior cooling system failure, Monte Carlo simulations are performed in order to estimate the risk of thermal runaway accident in batch reactors. It becomes then possible to predict the ratio of reactors, within an industrial plant, potentially subject to thermal runaway accident.  相似文献   

5.
The design of an emergency relief system (that is, a pressure safety valve or a rupture disk) for vessels, which may involve runaway reactions, requires knowledge of the chemical kinetics of the reactions involved. When safety-related problems are considered this is usually achieved using calorimetric tests, coupled with some suitable approximations on the kinetics of the reacting system. In this work we have analysed the extent to which the precise knowledge of the chemical kinetics influences the size of the relief system device for different reaction conditions. Decision criteria are proposed to identify situations where approximations in the kinetic mechanism lead to underestimation in the venting area.  相似文献   

6.
The safety in operation of a fixed-bed catalytic reactor remains a sensitive issue when a highly exothermic reaction is conducted and various process development elements such as controllability, stability, risk, and economic aspects are considered. Several model-based methods are used to estimate the safe operating region limits. Nominal conditions are set to limit the hot spot in the tubular reactor and avoid excessive thermal sensitivity to variations in the process parameters. When the catalyst or its characteristics are changed, the operating conditions have to be adjusted accordingly. The safety problem becomes more important when the production optimization requires setting the nominal operating point in the vicinity of the safety limits. This paper investigates the advantages as well as the precautions that need to be taken when using a more sophisticated model-based global sensitivity criterion (MV of Morbidelli & Varma) to routinely update the runaway critical conditions when changes in the investigated system frequently occur. A concrete example is provided for the case of an industrial fixed-bed catalytic reactor for nitrobenzene hydrogenation in vapour-phase. The analysis points out the discrepancies in predicting the runaway boundaries for complex processes between precise sensitivity-based MV-method and shortcut methods, and the importance of accounting for parameter uncertainty for both evaluation of the confidence region around the runaway boundaries and for the optimal set-point location. The close connection between the operating risk limits and the process kinetics is also highlighted even if the reactor geometry and the main flow conditions are kept unchanged.  相似文献   

7.
A general runaway criterion valid for single as well as for multiple reaction types, i.e. consecutive, parallel, equilibrium, and mixed kinetics reactions, and for several types of reactors, i.e. batch reactor (BR), semibatch reactor (SBR) and continuous stirred tank reactor (CSTR) has been developed. Furthermore, different types of operating conditions, i.e. isoperibolic and isothermal (control system), have been analysed. The criterion says that we are in a runaway situation when the divergence of the system becomes positive (div>0) on a segment of the reaction path. The results show that this is a general runaway criterion than can be used to calculate the runaway limits for chemical reactors. The runaway limits have been compared with previous criteria. A considerable advantage, over existing criteria, is that it can be calculated on-line using only temperature measurements and, hence, it constitutes the core of an early warning runaway detection system we are developing.  相似文献   

8.
Styrene is a reactive monomer commonly used to produce polystyrene and other copolymers. Unintended thermal runaway polymerization reactions of styrene keep reoccurring and have led to catastrophic consequences. One of the possible causes of these runaway incidents involves the contamination of the styrene monomer by incompatible species, which was not adequately investigated and documented. This study focuses on the quantification of thermal runaway hazards of styrene in contact with a series of contamination substances by adopting calorimetric analysis. Both Differential Scanning Calorimeter (DSC) and Advanced Reactive System Screening Tool (ARSST) were employed to examine the exothermic characteristics of styrene mixed with contaminating substances at different concentration levels and mixing conditions. Key safety parameters of the exothermic reaction, such as the onset temperature, the overall heat release, the maximum self-heating rate, as well as the activation energy, were obtained. The results indicated that the thermal runaway polymerization of purified styrene was significantly altered by the presence of contaminant species. Water effectively retarded and quenched the runaway polymerization at a higher temperature range. Alkaline had no substantial effect on the thermal runaway characteristics. The presence of acid solution under both static contact and vigorous mixing condition significantly promoted the thermal polymerization of styrene. A trace amount of concentrated acid initiated violent exothermic activity even at room temperature; and the severity of the reaction was profoundly impacted by the mass-transfer. Our study demonstrates significant implications in the prevention of runaway incidents during transportation and storage of styrene.  相似文献   

9.
In the past, the chemical industry in Japan has been the cause of a number of major industrial accidents. Subsequent to each accident, specific lessons have been learned. These lessons learned have been implemented in terms of safety education of the employees and/or safety measures of the equipment and facilities resulting in a rapid decrease of corresponding accident frequencies. In this paper, we summarized both recent and past major accidents caused by chemical substances in fixed installations in Japan. Case studies show that runaway reactions are among the main causes of major accident occurrences in the chemical process industry in Japan. A recent fatal poisoning accident caused by H2S gas generated during maintenance work again highlights the necessity of adequate safety management in a chemical factory. Therefore, even if hazard evaluation of chemical substances and chemical processes is necessary to prevent runaway reactions, human error is also an important factor contributing to reaction hazards [Wakakura, M. (1997) Human factor in chemical accidents, J. Safety Eng. High Press. Gas. Safety Inst. Japan, 34, 846].  相似文献   

10.
Safe operation of a catalytic reactor remains a sensitive issue when highly exothermic reactions are conducted and hazardous side reactions may occur. Derivation of the optimal operating conditions must include economic but also safety criteria, technological constraints, beside controllability and stability aspects. The present work introduces a criterion based on a joint failure probability index related to uncertainty in the runaway boundaries and the random disturbances of the operating parameters. The use of such a safety criterion is even more important when setting the optimal operating policy of the reactor in the vicinity of the runaway boundaries that often correspond to a high productivity. The paper indicates how an economically efficient but more prudent operating policy can be selected, by simultaneously considering the economic and safety objectives. An example is provided for the case of an industrial fixed-bed tubular reactor, of high thermal sensitivity, used for the catalytic oxidation of butane to maleic anhydride in vapour phase. The multi-objective optimization can lead to a prudent trade-off operating solution (corresponding to a failure probability of maximum 3–4%) that limits the reactor productivity. Being based on a local and global sensitivity analysis of the reactor, the proposed rule is generally applicable by minimizing the probability with which control variables violate their safety limits.  相似文献   

11.
The chemical reaction in certain range of operating conditions may exhibit parametric sensitivity where small changes in one or more of the input parameters lead to changes in the output variables (eg. reaction temperature). The sharp rise of the reaction temperature is a critical behavior that may lead to runaway conditions. Thus, it is of vital importance to determine the critical operating parameters consisting of the parametric sensitivity region under the consideration of intrinsic safety. In this paper, a modified divergence criterion is proposed based on the trace of Jacobian matrix at the maximum temperature. The nonlinear differential equations describing the dynamic behavior of the chemical reaction is linearized locally in the vicinity of the equilibrium point by the small perturbation analysis. The relationship between the perturbation equation and parametric sensitivity of the reaction system is investigated. The critical values computed by the modified divergence criterion are compared with Morbidelli and Varma criterion (MV criterion), Adler and Enig criterion (AE criterion) and divergence criterion (Div criterion). The comparison demonstrates the validity of the new criterion. In addition, the critical explosion pressures of two kinds of hazardous chemicals are computed by the various critical criteria and compared with published experimental data. The results show that the modified divergence criterion could give smaller computational error compared with the previous criteria.  相似文献   

12.
The application of construction polymers in engineering and alternative materials has always occupied a place in the market. In the production process of polymer resins, initiators can be used to lower the polymerization reaction energy threshold, which can improve reaction efficiency and reduce energy loss. However, as a commonly used energetic substance in the polymerization process, azos have caused related process hazards due to their exothermic characteristics. Because of this, it is essential to examine and analyze the thermal hazard characteristics of emerging azo substances, such as 2-cyanopropan-2-imemicarbazide (CABN). Although previous literature performs the calculation on related thermal hazard parameters of CABN, there is still exists a void for discussion in estimating the reaction model to avoid analogous hazards and enhance the existing thermal analysis. Based on the past literature, the reaction model is improved with thermogravimetric analysis as evidence. The revised thermal hazard parameters are calculated as the basis of control and mitigation measures, the kinetic model is used to estimate the modified safety parameters, and in the judgment of the runaway reaction, the critical temperature of the runaway is found by analyzing the influence of slight changes in ambient temperature on the reaction temperature. The results show that the critical temperature that causes CABN to enter the runaway reaction is delayed, and the hazard is lower than in the storage situation. Therefore, the thermal hazard to CABN mainly focuses on the safety environment and measures during storage.  相似文献   

13.
为了解决醋酸乙烯聚合反应失控所引起的超压问题,通过VSP2绝热量热仪研究了醋酸乙烯聚合反应的失控特性,并通过Leung's法对某醋酸乙烯聚合反应器的安全泄放面积进行了计算;然后,在其他条件不变的情况下,研究引发剂质量分数对失控特性和泄放面积的影响,结果表明,引发剂质量分数对反应总放热量的影响不大,体系绝热温升为105~115℃;但引发剂质量分数越大,失控反应的最大温升速率和最大压升速率越大。这是因为引发剂质量分数越大,在相同泄放压力和最大累积压力下,单位质量反应物的放热速率就越大,也就需要更大的泄放面积;最后,引入无量纲数W~*、G~*和A~*,拟合出它们与引发剂质量分数X*的关系式,结果表明,在研究范围内所需安全泄放面积随引发剂质量分数线性增大。  相似文献   

14.
Reaction thermal runaway is one of the most important reasons leading to chemical accidents. With the rapid development of the chemical industry in the world, especially the fine chemical industry, various safety accidents also occur frequently. Therefore, it is necessary to study the exothermic behavior of the reaction process. In this study, reaction calorimeter was used to study the exothermic phenomena during the chlorination reaction and amination reaction. Differential scanning calorimetry was performed on the reactants, and thermogravimetric experiments were performed on the products. In addition, adiabatic experiment was performed to study the thermal runaway behavior of amination products under adiabatic conditions. The results showed that the target reactions generated a large amount of heat in the initial stage. The maximum temperature of amination reaction is higher than the initial decomposition temperature of the amination product under adiabatic condition. The pyrolysis of amination product was divided into three stages. The product had a high apparent activation energy at the beginning of decomposition, and the apparent activation energy decreased as the decomposition progressed.  相似文献   

15.
Thermal analysis by differential scanning calorimetry and thermogravimetric/differential thermal analysis mass spectrometry, adiabatic calorimetry, a gram-scale heating test, and infrared spectroscopy were performed to evaluate the thermal hazards of diphenylmethane diisocyanate (MDI) and prove the occurrence of a runaway reaction. The self-polymerization of MDI was found to occur at about 340 °C under rapid heating conditions. Carbon dioxide was eliminated and heat was generated to allow polymerization. Under adiabatic and closed conditions, the runaway reaction of MDI can begin at least from 220 °C. Besides it is highly probable that the runaway reaction of MDI can begin from a lower temperature in an actual process scale. More heat was generated than in the previous case and the pressure rose rapidly. A closed 2-mm-thick glass vessel exploded because of the runaway reaction of MDI even if the temperature was lower than 300 °C. Therefore, MDI could cause fatal runaway reactions below 300 °C, where MDI had been assumed to self-polymerize by eliminating carbon dioxide previously.  相似文献   

16.
过氧化氢热爆炸研究进展   总被引:2,自引:0,他引:2  
过氧化氢作为绿色环保的氧化剂,广泛应用于工业的各个领域,同时也因其热分解爆炸危险性导致了一系列严重的火灾爆炸事故。过氧化氢在高温或与一些不兼容化学物质作用下,将会激发其热危险性,进而引发热失控反应,最终导致爆炸事故的发生。结合近年来国内发生的过氧化氢热爆炸事故,简要概述了其热爆炸事故历程,并从理论研究和实验研究两个方面综述了过氧化氢热爆炸的研究进展。理论研究方面,主要介绍了化学反应失控模型和基于热动力学的研究方法,尤其对基于热失控模型的热风险评估进行了详细的阐述。实验研究方面,分析了高温条件下与杂质催化作用下过氧化氢的热危险性,包括无机杂质和有机杂质。最后就过氧化氢热爆炸的研究提出了进一步的研究方向。  相似文献   

17.
Nowadays many chemical industries are SMEs where multi-purpose batch or semi-batch reactors are commonly used. Vent sizing for realistic runaway scenario is not an easy task for such enterprises since they have usually few resources and use multi-purpose reactors with fast process turnovers. As a consequence these batch and semi-batch reactors are usually equipped with emergency relief systems sized once forever when the reactor is designed. This can lead to a large underestimation of the vent area in case of runaway reactions occurring when processes different from the ones considered for originally sizing the vent are carried out.The approach proposed in this work aims to identify the maximum reactor load leading to safe conditions even in case of runaway phenomena to be handled with the emergency relief system already installed (or even with a smaller vent area). This approach allows avoiding the change of the emergency relief system with a larger vent area (as required every time a new more hazardous process has to be carried out on existing reactors) at the price of lower plant productivity.  相似文献   

18.
It is well-known that, for certain values of the operative parameters influencing the dynamic behavior of a chemical reactor, a phenomenon known as thermal runaway (that is, a loss of the reactor temperature control) may arise. Such a situation can be really dangerous because above a certain threshold temperature value unwanted side reactions or, worse, decompositions of the reacting mixture may be triggered evolving high amounts of flammable or toxic gases that can cause reactor pressurization and, eventually, its explosion. For this reason, since the beginning of the previous century a number of studies concerning the prediction of the so called runaway boundaries has been carried out. In this work, a modified version of the divergence criterion for runaway detection, originally developed by Zaldívar and co-workers, is presented. Such a modified divergence criterion is capable of treating whatever type of complex controlled reacting system (taking into account not only temperature control but also dosing strategies) and its reliability has been demonstrated for isoperibolic semibatch reactors using literature experimental data concerning the nitration of 4-Chlorobenzotrifluoride in mixed acids and the nitric acid oxidation of 2-octanol to 2-octanone and further carboxylic acids.  相似文献   

19.
The present paper deals with accidents risk in batch reactors. It identifies the conditions for the occurrence of a thermal runaway and develops a probabilistic approach to assess the relevant risk. It investigates also the conditions for optimal synthesis of peracetic acid (PAA) with hydrogen peroxide (HP) and acetic acid (AA). The kinetic model of reversible reaction and side reaction of PAA synthesis is used to predict reactor temperature and molar ratio of PAA by ASPEN PLUS software. A sensitivity analysis is performed under different conditions such as constant temperature or adiabatic process with different concentrations of sulfuric acid. Assuming a prior cooling system failure, the conditions for reaction runaway triggering a thermal accident are identified in the case of PAA synthesis. Monte Carlo simulations are used in order to calculate the conditional probability of accident and optimize the synthesis of PAA.  相似文献   

20.
The metal-based catalytic oxidation of alkenes to the corresponding epoxides is playing a significant role in the modern chemical industry. Nevertheless, these key processes are still lacking proper understanding with respect to the gas-phase runaway behaviour (thermal explosion) and to the hot spot formation on the catalytic surface, under the typical process conditions.This work aims to enlighten these aspects by considering either the catalytic or the gas-phase chemistry for the development of reactor operative diagrams, in order to define the best-operating conditions with respect to the selectivity, the productivity, and the process safety aspects.The proposed methodology has been applied to the oxidation of ethylene and propylene for the direct oxidation process by pure oxygen, considering a detailed kinetic model accounting for the homogeneous reactions, coupled with the heterogeneous catalytic mechanisms.Sensitivity and reaction path analyses were performed to individuate the ruling species and reactions determining the transition to runaway conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号