首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为进一步提高A-AAO工艺的厌氧释磷效率,本文以稳定运行A-AAO工艺的污泥为研究对象,考察碳源浓度和污泥回流液硝态氮浓度对厌氧释磷速率的影响。研究结果表明:污泥回流液硝氮浓度越高,厌氧释磷速率越缓慢,且最大释磷量也较低,硝氮浓度从0 mg/L增加到20 mg/L时,释磷速率从0.150 mg TP/(gMLVSS·min)降低到0.103 mgTP/(gMLVSS·min),最大释磷量也从23.95 mg/L减少到15.97 mg/L。碳源浓度显著影响了厌氧区最大释磷量,进水碳源浓度(以乙酸钠投加计算)分别为100,200和300 mg/L,最大释磷总量分别为10.59 mg/L,19.62 mg/L及25.48 mg/L。  相似文献   

2.
亚硝酸盐积累对A~2O工艺生物除磷的影响   总被引:1,自引:1,他引:0  
曾薇  李磊  杨莹莹  张悦  彭永臻 《环境科学》2010,31(9):2105-2112
常温条件下,通过控制好氧区DO浓度为0.3~0.5 mg/L,同时增大系统内回流比以降低系统好氧实际水力停留时间(actual hydraulic retention time,AHRT),在处理低C/N比实际生活污水的A2O工艺中成功启动并维持了短程硝化反硝化.但随着系统出水亚硝酸盐含量的升高,系统对磷的去除效果逐渐恶化.当好氧区亚硝酸盐浓度19 mg/L时,系统出水磷浓度大于进水磷浓度,系统处于净释磷状态.通过对原水COD浓度、反应区温度、pH值、游离亚硝酸浓度(free nitrous acid,FNA)等分析,表明碳源不足及短程硝化引起的亚硝酸盐积累影响了聚磷菌厌氧释磷和好氧吸磷;尤其是好氧区较高的FNA浓度(HNO2-N 0.002~0.003 mg/L)对聚磷菌好氧吸磷的抑制是导致系统除磷效果恶化的直接原因.通过外投碳源提高原水COD浓度,提高了聚磷菌厌氧释磷合成PHA的能力;同时增强了系统的反硝化能力,降低好氧区亚硝酸盐浓度,从而降低FNA对聚磷菌好氧吸磷的抑制程度,系统的除磷性能可迅速恢复;系统对磷的去除率可达96%以上.  相似文献   

3.
为研究厌氧释磷过程中的影响因素,以连续流A 2N双污泥中试污泥为样品,考察了碳源种类、碳源浓度、pH值以及温度对反硝化除磷污泥厌氧释磷的影响。结果表明:乙酸为碳源时释磷效果最佳,其次是葡萄糖,甲醇为碳源时释磷效果较差。MLSS为1 200 mg/L左右时,投加200 mg/L的COD即可保证充分释磷。pH值为6.3~8.8,对厌氧释磷效果影响不大,适当提高pH值有利于提高释磷速率。温度为20~30℃,释磷效果较好。另外,实验同时研究了反硝化除磷污泥分别利用不同电子受体(硝氮、氧气)的吸磷特性。以硝氮为电子受体的反硝化吸磷过程中,前15min的反硝化吸磷脱氮速率最高,吸磷速率与反硝化速率分别为11.5、10.4 mgN/gVSS·h;以氧气为电子受体的好氧吸磷过程中,前15 min的好氧吸磷速率最高,达到20.4 mgP/gVSS·h,大约为反硝化吸磷的2倍。  相似文献   

4.
为了提高实际污水处理工艺中除磷效率,优化系统中厌氧释磷的条件,主要研究了三种不同原水投加方式对厌氧释磷过程的影响。本试验采用UniFed SBR系统内的活性污泥,考察了实际生活污水对活性污泥的释磷影响,采用1次进水、4次进水和连续进水3种不同原水供给方式对于厌氧释磷性能进行比较。研究结果表明,不同进水方式可有效延长实际生活污水的注入时间,大大提高其中有机底物的可利用性,释磷速率由0.082增至0.143 mg/(L.min),其中单位活性污泥释磷量分别为2.24×10-3、3.26×10-3和3.80×10-3mg/mg,这种碳源投加方式的改变,使得利用实际生活污水的厌氧释磷特性得到优化,并提高了实际生活污水中有机碳源的可利用性和除磷效率。  相似文献   

5.
采用两组A/A/O方式运行的SBR反应器,溶解氧分别控制在2~4mg/L(对照组)和6~8mg/L(过量曝气组),通过试验对比研究了过量曝气对聚磷菌厌氧释磷、缺氧吸磷、好氧吸磷性能的影响。结果表明:过量曝气初期,出水磷浓度低于对照组,一周后出水磷浓度开始上升,除磷率下降了18%;过量曝气时,厌氧释磷量是对照组的1.45倍,释磷速率不变,缺氧吸磷量增加,但反硝化聚磷菌的比例减少,好氧吸磷量和吸磷速率均降低,分别为对照组的75%和68%,而内源损耗引起的无效释磷和好氧吸磷能力降低是除磷效果变差的主要原因;过量曝气使污泥的SVI值升高,平均粒径减小,出水SS略优于对照组,污泥的含磷量降低,总磷去除效果变差,长期过量曝气,将会导致生物除磷过程的恶化。  相似文献   

6.
金黄色葡萄球菌聚磷特性研究   总被引:3,自引:2,他引:1  
在厌氧/好氧交替环境下,对一般不认为是典型聚磷菌的金黄色葡萄球菌(Staphyloccocus aureus)纯菌的释磷、聚磷行为和碳源利用情况进行了研究,并考察了其对实际生活污水中磷的去除效果.结果表明,正常好氧条件下培养的金黄色葡萄球菌,改为厌氧培养5h后就有明显的释磷行为;在紧接下来转为好氧培养时会快速吸磷,6h时的吸磷量达水中总磷的65%,菌体含磷量由之前的0.98%增加到2.30%.染色观察显示,厌氧培养后菌体内聚羟基丁酸(PHB)颗粒显著增多,转为好氧培养后胞内聚磷颗粒增多.经过厌氧/好氧交替运行4个周期后菌体的含磷量就由初期的0.8%增至4.6%,但每个环境交替周期内吸磷量并未显著增加,且在厌氧/好氧交替的第1个周期,金黄色葡萄球菌即具有明显释磷、吸磷行为.该菌在厌氧阶段可利用包括蛋白胨、葡萄糖等大分子有机物在内的多种碳源释磷;其对实际生活污水磷的去除率高达98.2%.因此,金黄色葡萄球菌具有典型的聚磷菌特征,其聚磷时可利用的碳源可以是VFAs之外的蛋白质和葡萄糖,且其聚磷能力不需要诱导,是其与生具有的本性.  相似文献   

7.
A2/O污水处理工艺中基质转化机理研究   总被引:3,自引:1,他引:2  
以实际污水培养驯化污泥的小试规模A2/O工艺为研究对象,对系统中基质的转化机理及硝态氮对基质转化的影响进行了批式试验研究.结果表明,在无硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD有51%可被聚磷菌吸收并合成为聚羟基链烷酸(PHAs);缺氧和好氧条件下的比吸磷速率为3.87和6.54 mg/(g·h),利用单位PHAs的吸磷量(rP/PHA)分别为0.38和0.78而在有硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD仅有30.8%可被聚磷菌吸收并合成PHAs,61.5%用于还原硝态氮;缺氧和好氧条件下的比吸磷速率为2.24和4.58 mg/(g·h),rP/PHA值分别为0.35和0.77.同时,在这2个系统中厌氧阶段释放的磷和消耗的COD成良好的线性关系.硝态氮存在于厌氧环境会降低聚磷菌的厌氧释磷速率和效率,使PHAs的合成量减少,从而降低聚磷菌的缺氧和好氧吸磷速率,但并不会影响其吸磷能力.  相似文献   

8.
聚磷菌在不同碳源下的反硝化研究   总被引:2,自引:1,他引:1  
利用SBR系统对聚磷菌进行了培养,并通过荧光原位杂交手段检测了系统中聚磷菌Candidatus Accumulibacter phosphatis的富集程度.聚磷菌也是一种普通异养菌,为了研究它的反硝化能力,排除了聚磷菌的正常释磷和吸磷过程,仅考察在不同碳源下反硝化性能.结果表明,乙酸和PHB都能成为聚磷菌反硝化的电子供体.当以乙酸为外在单一碳源时,其反硝化速率和PHB生成速率与起始硝酸盐浓度无关,但是当起始状态硝酸盐浓度越高时,消耗单位乙酸生成的PHB和硝酸盐还原量越小.以PHB为内在碳源和能源时,聚磷菌的反硝化速率呈现对于基质(硝酸盐)的零级动力学反应,比反硝化速率为0.973 3mg/(g.h),此外PHB平均比消耗速率为(以PHB计)2.462 6 mg/(g.h).  相似文献   

9.
好氧段碳源浓度对同步去除和富集磷酸盐生物膜的影响   总被引:1,自引:1,他引:1  
徐林建  潘杨  章豪  冯鑫  魏攀龙  尤星怡 《环境科学》2019,40(7):3179-3185
利用聚磷菌以循环交替O/A模式运行,对生活污水处理厂的主流工艺中实现磷酸盐的同步去除和富集,探究了好氧段碳源浓度对聚磷生物膜去除和富集磷酸盐性能以及生物膜中微生物种群结构的影响.结果表明,好氧COD质量浓度从200 mg·L~(-1)降低到0 mg·L~(-1),吸磷速率提升1. 29倍,出水磷质量浓度稳定在0. 5 mg·L~(-1)以下;释磷速率提升3. 56倍,富集液磷酸盐质量浓度从27. 125 mg·L~(-1)升高到55. 91 mg·L~(-1).微生物群落变化中,鉴定为聚磷菌的变形菌门(Proteobacteria)的含量增加约2倍,红环菌科(Rhodocyclaceae)和厌氧绳菌科(Anaerolineaceae)的富集效果分别提高了2. 28和5倍.降低好氧段碳源浓度,有利于聚磷菌的筛选和富集,强化了好氧段磷酸盐的去除以及厌氧段磷酸盐的释放,获得了更高的磷酸盐富集液,并且为以资源回收为目的的未来城市污水处理厂提供降低好氧段碳源需求的理论基础.  相似文献   

10.
改进分段进水A/O生物脱氮工艺强化生物除磷   总被引:4,自引:1,他引:3  
王伟  彭永臻  殷芳芳  王淑莹 《环境科学》2009,30(10):2968-2974
采用分段进水A/O中试处理系统处理低C/N生活污水.为实现同步脱氮除磷,对分段进水A/O工艺进行改进并对改进前后系统的脱氮除磷效率进行评价.改进前分段进水A/O工艺平均TN去除率为66.52%,TP去除率为29.74%;改进后的分段进水A/O工艺不仅可以稳定地实现同步脱氮除磷,在三段进水比为0.45∶0.35∶0.20时,系统平均TP去除率达89.81%,且由于反硝化除磷的强化节省部分碳源,TN去除率达73.61%,比改进前提高7.09%.为验证不同阶段聚磷菌及反硝化聚磷菌在系统内的选择增殖情况,试验对不同运行阶段的活性污泥进行静态厌氧放磷、好氧及缺氧吸磷试验,结果表明,工艺经过改进后,聚磷菌及反硝化聚磷菌均得到较大程度地选择富集.采用改进工艺,污泥最大比好氧吸磷速率[P/(MLSS.t)]由2.34 mg/(g.h)提高到10.67 mg/(g.h),最大比缺氧吸磷速率由0.33 mg/(g.h)提高到2.81 mg/(g.h).  相似文献   

11.
生物除磷系统的聚磷微生物种群及其检测方法   总被引:1,自引:0,他引:1  
总结了强化生物除磷(EBPR)系统中的聚磷菌微生物学的研究成果,介绍了聚磷菌所涉及主要菌群的菌属分类情况及其生物特性,阐述了EBPR系统内聚磷菌微生物学研究的各种分离鉴定技术的特点,包括传统的微生物纯培养技术、染色与光学显微镜技术,现代分子及其扩展技术及组合技术等,并分析了各分子生物技术的应用情况。重点介绍了以Accumulibacter为主的聚磷菌形态学和代谢特性方面取得的研究进展,并对今后聚磷菌微生物学的研究和发展方向进行了论述。  相似文献   

12.
我国西北地区荒漠化土壤的一个重要特征是严重缺磷。粉煤灰和城市污水沉淀物均有较高的磷含量。但是,如果将城市污水沉淀物单独加入土壤,在强淋雨条件下其有效磷将会再度流失。为研究如何提高有效磷的利用率,特设计了粉煤灰和污水沉淀物复合土壤添加剂中磷的有效化实验。实验表明:多孔的粉煤灰颗粒对污水沉淀物中的有效磷有强烈的吸附、存储,并缓慢解吸、释放的作用。同时,粉煤灰颗粒中的磷也会在污水的生物化学等综合作用下缓慢溶出。因此,在植被覆盖率低、干旱且易遭受集中强淋雨条件的西北荒漠化土壤中,添加由粉煤灰和污水沉淀物组成的复合添加剂,能够有效恢复植被,加快改善西北地区荒漠化的步伐。  相似文献   

13.
双循环两相生物处理工艺(BICT)除磷中试试验   总被引:3,自引:1,他引:2  
一种新型的生物脱氮除磷工艺——双循环两相生物脱氮除磷工艺,它是在序批式活性污泥法基础上增设独立的生物膜反应器,实现微生物的分相培养,对提高脱氮除磷效率、增强系统运行的稳定性和可靠性提供了很大的潜力。通过对城市污水的试验,结果表明,在适宜的负荷和运行条件下TP去除率可达90%,出水TP浓度可控制在1·0mg/L以下。  相似文献   

14.
剩余污泥中磷的回收利用   总被引:1,自引:0,他引:1  
基于我国磷资源的短缺和城市污泥处理处置的现状,针对磷元素的流动特性,分析了城市污泥中磷回收的必要性。探讨了污泥中磷由固相释放至液相的厌氧消化法、臭氧氧化法、热处理法、超声波溶胞法和焚烧溶出法等方法,并对回收污泥中磷的化学沉淀法、吸附解析法、焚烧热处理法、纳滤法等的原理和研究现状进行了综述,对城市污泥中磷释放与回收技术的研究、开发与应用前景进行了展望,为城市污泥中磷的资源化回收利用提供指导。  相似文献   

15.
采用脉冲进水缺好氧交替工艺(SAOSBR)处理低C/N实际生活污水,考察了短程脱氮对于低碳源生活污水同步脱氮除磷效果的强化作用,并分析了短程脱氮强化生物除磷的机理.结果表明,通过短时的饥饿处理配合缺好氧交替的运行方式实现了系统的短程硝化,亚硝酸盐积累率稳定在95%以上.短程的实现还强化了系统的同步脱氮除磷效果,总氮和磷的平均去除率相比于全程脱氮过程分别提高了约6%和36%.分析表明短程强化生物除磷的原因主要是由于残留的NO2-对聚磷菌厌氧释磷的影响较小.静态试验也证实,在碳源不足的条件下,以NO2-为电子受体的反硝化作用相比于NO3-可以减弱反硝化菌与聚磷菌之间的碳源竞争,从而提高聚磷菌的厌氧释磷量和聚羟基烷酸(PHA)的合成量.因此,在处理低C/N生活污水时,短程脱氮的实现更有利于系统的生物除磷.  相似文献   

16.
黄筹  王燕  郑凯凯  王硕  李激 《环境工程》2020,38(7):58-65
随着全国重点流域城镇污水处理厂迎来新一轮提标改造,其中部分污水处理厂对出水总磷(TP)的排放限值由0.5 mg/L降低为0.3 mg/L,甚至降至0.2 mg/L,这对城镇污水处理厂除磷提出了新的挑战。通过对全国58座执行GB 18918-2002《城镇污水处理厂污染物排放标准》一级A标准的城镇污水处理厂进行调研分析,探讨了目前污水处理厂在实际生产运行中除磷存在的主要问题并给出相应对策,为今后高TP标准排放下污水处理厂的运行管理提供技术指导。调研结果表明:各污水处理厂的释磷潜力为0.01~23.98 mg/(g·h),其平均值为2.77 mg/(g·h),释磷潜力普遍较弱。生物除磷效果较差的主要原因为进水碳源不足、厌氧区存在高浓度硝态氮及同步化学除磷的抑制作用。基于上述调查分析,有针对性地提出了具体的调控措施,并建议污水处理厂要根据进水水质情况,通过静态实验确定最佳除磷药剂种类及合适的投加量,有效控制化学除磷过程,从而达到节省药耗的目的。  相似文献   

17.
不同厌氧时间对富集聚磷菌的SNDPR系统处理性能的影响   总被引:5,自引:0,他引:5  
在延时厌氧(3h)/低氧(2.5h,溶解氧0.5~1.0mg/L)条件下运行的富集聚磷菌的同步硝化反硝化(SNDPR)系统中,以城市生活污水为处理对象,研究了不同厌氧时间(3.5,3,2,1.5h)对系统内碳源贮存以及脱氮除磷效果的影响.试验结果表明:厌氧时间为3.5h,反应器脱氮效果最好.厌氧时间为3h时,反应器除磷效果最好,出水PO43-浓度为0.35mg/L.厌氧时间从1.5h逐渐上升到3.5h时,厌氧末贮存的聚羟基脂肪酸-PHAs的量也随之增加;当厌氧时间从3h升至3.5h时,释P量反而下降,出水P浓度反而升高.这说明增加厌氧时间有利于强化内碳源贮存,但过长的厌氧时间反而不利聚磷菌种群的富集.运行51个周期之后在厌氧时间为1.5h和2h的反应器内出现非丝状菌膨胀;反应周期内pH值的变化曲线可以作为反应各个过程的指示参数.  相似文献   

18.
Increasing attention has been paid to phosphate-accumulating organisms(PAOs)for their important role in biological phosphorus removal.In this study,microbial communities of PAOs cultivated under different carbon sources(sewage,glucose,and sodium acetate) were investigated and compared through culture-dependent and culture-independent methods,respectively.The results obtained using denaturing gradient gel electrophoresis(DGGE)of polymerase chain reaction-amplified 16S rDNA fragments revealed that the diversity of bacteria in a sewage-fed reactor(1#)was much higher than in a glucose-fed one(2#)and a sodium acetate-fed one(3#);there were common PAOs in three reactors fed by different carbon sources.Five strains were separated from three systems by using a phosphate- rich medium;they were from common bacteria isolated and three isolates could not be found in DGGE profile at all.Two isolates had good phosphorus removal ability.When the microbial diversity was studied,the molecular biological method was better than the culture-dependent one.When phosphorus removal characteristics were investigated,culture-dependent approach was more effective. Thus a combination of two methods is necessary to have a comprehensive view of PAOs.  相似文献   

19.
沸石强化A/O同步脱氮除磷工艺的生物-化学除磷研究   总被引:3,自引:0,他引:3  
沸石强化了生物硝化作用,但回流的硝酸盐在A段抑制了聚磷菌释放磷,使生物脱氮工艺无除磷效果,需要化学除磷。铝盐和铁盐均具有很好的化学除磷效果,且与投加位置无关。当按磷与铝的摩尔比1∶1.5投加Al2(SO4)3·18H2O时,磷的去除率在85%以上;当按磷与铁的摩尔比1∶1投加FeSO4·7H2O时,磷的去除率在80%以上;当在A段投加20mgLFeSO4·7H2O和30mgLAl2(SO4)3·18H2O混合除磷剂能去除沸石强化AO生物脱氮工艺90%左右的磷,使磷达到出水排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号