首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT: Water and energy are inextricably bound. Energy is consumed and sometimes produced by every form of water resources system. Opportunities for future development and production of energy resources abound as well as those for significant reductions in energy consumption through wise water development and management. Technological, political, social, economic and environmental factors interrelate in the energy-water mix. The role of the water resources planner will have to be expanded to include assessment of water-energy impacts in addition to traditional planning considerations. An energy conservation account may well have to be added to the dimensions of national economic development and environmental quality in water resources planning. Ways must be found to reduce amounts and rates of water used and energy consumed through new manufacturing processes, improved irrigation practices, better management, new or altered social-political-economic arrangements and other procedures. To do this will require setting priorities and making difficult management decisions. The water fraternity can play a major role in alleviating the energy crisis we now face.  相似文献   

2.
This article describes biomass fuels as renewable and sustainable energy resources in Minnesota as well as across the United States. This country has long benefited from surplus supplies of diverse energy resources, while our dependency on foreign petroleum supplies and domestic coal reserves has only recently prompted Congress to recognize the importance of renewable and alternative fuels such as biomass energy. Our further utilization of biomass power and biofuels can be an important step in altering our dependency on both coal and petroleum while simultaneously reducing carbon dioxide emissions. © 1998 John Wiley & Sons, Inc.  相似文献   

3.
ABSTRACT: This paper reports on the development of a mathematical model for forecasting energy development in the Yellowstone study area for the years 1985 and 2000, and determining the associated economic demands for water, land, labor, capital, and mineral resources. The study was prepared for use by the Missouri River Basin Commission in conducting a comprehensive, “Level B” planning study of the water and related land resources in the Yellowstone River Basin. The study results indicate that the amount of coal development in the Yellowstone study area will depend primarily upon state and federal energy policies and regulations. Policies related to slurry pipeline transportation of coal will be particularly important in determining the level and pattern of future energy development in the area. Coal production under the “most probable” scenario is expected to increase from about 40 million tons in 1976 to 163 million tons per year by 1985, and 513 million tons in the year 2000. Consumptive water use for energy development in the study area could be as much as 556,000 acre-feet per year by the year 2000 (under the high scenario). A parametric analysis was conducted on the 1985 most probably scenario to determine the influence on the study results of variations in the delivered price of water. Water requirements were reduced by nearly one-fourth as water costs increased from zero to over $750 per acre-foot.  相似文献   

4.
ABSTRACT: Factual inputs which may be useful for completing first-order assessments to aid decision-making on the allocation of scarce water resources are compiled. Water needs of major manufacturing industry groups and of minerals industries show wide variations in several measures of water use intensity. The chemicals and allied products and primary metals industries dominate the total water intake and consumptive water use by manufacturing industries. Consumptive use per employee for the petroleum and coal products industry group is nearly 2.5 times higher than that for any other industry group. Estimates of the water requirements per unit energy output for energy-processing systems vary by as much as an order of magnitude. Agricultural water use is larger than that of any other industry but water use for irrigation is not expected to increase significantly by the year 2020. In California, the production of crop calories and proteins per unit of irrigation water applied may vary by more than an order of magnitude. Crops which offer larger monetary returns per acre are irrigated most frequently.  相似文献   

5.
Ethanol fuels: Energy security,economics, and the environment   总被引:6,自引:0,他引:6  
Problems of fuel ethanol production have been the subject of numerous reports, including this analysis. The conclusions are that ethanol: does not improve U.S. energy security; is uneconomical; is not a renewable energy source; and increases environmental degradation. Ethanol production is wasteful of energy resources and does not increase energy security. Considerably more energy, much of it high- grade fossil fuels, is required to produce ethanol than is available in the energy output. About 72% more energy is used to produce a gallon of ethanol than the energy in a gallon of ethanol. Ethanol production from corn is not renewable energy. Its production uses more non- renewable fossil energy resources in growing the corn and in the fermentation/distillation process than is produced as ethanol energy. Ethanol produced from corn and other food crops is also an unreliable and therefore a non-secure source of energy, because of the likelihood of uncontrollable climatic fluctuations, particularly droughts which reduce crop yields. The expected priority for corn and other food crops would be for food and feed. Increasing ethanol production would increase degradation of agricultural land and water and pollute the environment. In U.S. corn production, soil erodes some 18- times faster than soil is reformed, and, where irrigated, corn production mines water faster than recharge of aquifers. Increasing the cost of food and diverting human food resources to the costly and inefficient production of ethanol fuel raise major ethical questions. These occur at a time when more food is needed to meet the basic needs of a rapidly growing world population.  相似文献   

6.
Chen, Limin, Sujoy B. Roy, and Robert A. Goldstein, 2012. Projected Freshwater Withdrawals Under Efficiency Scenarios for Electricity Generation and Municipal Use in the United States for 2030. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/jawr.12013 Abstract: Water withdrawals in the United States (U.S.) have been relatively uniform over the past two decades on a nationally aggregated basis, although on a more highly resolved geographical basis, increases have occurred, largely associated with growth in population and the cooling needs for new electricity generation. Using recent county‐level water use data, we develop projections for five different scenarios, bracketing a range of future conditions, and representing different levels of efficiency in the municipal and electricity generation sectors, where the municipal sector includes public and self‐supplied domestic withdrawals. Starting with the 2005 estimate of 347 billion gallons per day (bgd) of freshwater withdrawal in the continental U.S., our analysis shows that under a business‐as‐usual scenario of growth, there will be a need for additional water over current levels: 11 bgd in the municipal sector, with a smaller requirement for new electricity generation (1 bgd). However, we also estimate that withdrawals could be reduced significantly over current levels, through increased water use efficiencies in the electric power and municipal sectors. The study shows that if water withdrawals are to be held at their current levels for the thermoelectric and municipal sectors individually at a county level over the next 25 years, large improvements in efficiency will be needed in many parts of the Southeast and Southwest.  相似文献   

7.
Water Footprint of the Palestinians in the West Bank1   总被引:1,自引:0,他引:1  
Abstract: Water in the West Bank of Palestine is a key issue due to its limited availability. Water is used from own sources for domestic, industrial, and agricultural purposes. Moreover, water is consumed in its virtual form through consumption of imported goods, such as crops and livestock, the production of which used water in the country of production. In addition, wastewater in many parts of the West Bank is disposed off without treatment into the wadis, deteriorating the quality of the water resources in the area and, therefore, further reducing the quantity of good quality water available. This paper calculates the water footprint for the West Bank. The consumption component of the water footprint of the West Bank was found to be 2,791 million m3/year. Approximately 52% of this is virtual water consumed through imported goods. The West Bank per capita consumption component of the water footprint was found to be 1,116 m3/cap/year, while the global average is 1,243 m3/cap/year. Out of this number 50 m3/cap/year was withdrawn from water resources available in the area. Only 16 m3/cap/year (1.4%) was used for domestic purposes. This number is extremely low and only 28% of the global average and 21% of the Israeli domestic water use. The contamination component of the water footprint was not quantified but was believed to be many times larger than the consumption component. According to the official definition of water scarcity, the West Bank is suffering from a severe water scarcity. Therefore, there is a need for a completely new approach towards water management in the West Bank, whereby return flows are viewed as a resource and that is geared towards a conservation oriented approach of “use, treat, and reuse.”  相似文献   

8.
Viers, Joshua H., 2011. Hydropower Relicensing and Climate Change. Journal of the American Water Resources Association (JAWRA) 47(4):655‐661. DOI: 10.1111/j.1752‐1688.2011.00531.x Abstract: Hydropower represents approximately 20% of the world’s energy supply, is viewed as both vulnerable to global climate warming and an asset to reduce climate‐altering emissions, and is increasingly the target of improved regulation to meet multiple ecosystem service benefits. It is within this context that the recent decision by the United States Federal Energy Regulatory Commission to reject studies of climate change in its consideration of reoperation of the Yuba‐Bear Drum‐Spaulding hydroelectric facilities in northern California is shown to be poorly reasoned and risky. Given the rapidity of climate warming, and its anticipated impacts to natural and human communities, future long‐term fixed licenses of hydropower operation will be ill prepared to adapt if science‐based approaches to incorporating reasonable and foreseeable hydrologic changes into study plans are not included. The licensing of hydroelectricity generation can no longer be issued in isolation due to downstream contingencies such as domestic water use, irrigated agricultural production, ecosystem maintenance, and general socioeconomic well‐being. At minimum, if the Federal Energy Regulatory Commission is to establish conditions of operation for 30‐50 years, licensees should be required to anticipate changing climatic and hydrologic conditions for a similar period of time.  相似文献   

9.
Biomass is one of the renewable energy sources on which policy makers are greatly dependent on since it is a flexible feedstock capable of conversion into electricity, transport liquid fuels and heat by chemical and biological processes on demand. Though numerous publications have examined the relationship of economic growth with renewable energy and other parameters, biomass energy has never been included in these studies. Then, this study examines the causal relationship within a multivariate panel cointegration/error correction framework which combines the cross-section and time series data while allowing for heterogeneity across different provinces. After employing panel data regression model ranging from 2003 through 2012 to examine the relationships of biofuels production with sustainable development in China, the paper concludes that the development of biofuel energy production integrated with the consideration of the improvement of income per capita, and the attraction of more capital investment, does make a significant contribution to economic growth. However, some negative side effects including the increase of greenhouse emissions and the decrease of marginal land still coexist with the economic development. Of course, the importance of these findings lies on their implications and their adoption on strategic policies.  相似文献   

10.
Abstract

Biomass energy is the most renewable energy resource in the world. Biomass energy is derived from plant and animal material, such as wood from forests, residues from agricultural and forestry processes, and industrial, human or animal wastes. The production of biofuels such as ethanol and biodiesel has the potential to replace significant quantities of fossil fuels in many transport applications, electricity, generate heat and steam, etc. In this study, Turkish sugar sector and sugar capacity, residue quantitiy and its possibility of utilization is examined.  相似文献   

11.
This article presents an empirically based model, WiCTS ( Wi thdrawal and C onsumption for T hermoelectric S ystems), to estimate regional water withdrawals and consumption implied by any electricity generation portfolio. WiTCS uses water use rates, developed at the substate level, to predict water use by scaling the rates with predicted energy generation. The capability of WiCTS is demonstrated by assessing the impact of renewable electricity generation scenarios on water use in the United States (U.S.) through 2050. The energy generation scenarios are taken from the Renewable Energy Futures Study performed by the U.S. National Renewable Energy Laboratory of the U.S. Department of Energy. Results indicate reductions in water use are achieved under these renewable energy scenarios. The analysis further explores the impact of two modifications to the modeling framework. The first modification presumes geothermal and concentrated solar power generation technologies employ water‐intensive cooling systems vs. cooling technology that requires no water. The second modification presumes all water‐intensive cooling technologies use closed cycle cooling (as opposed to once‐through cooling) technologies by 2050. Results based on one of the renewable generation scenarios indicate water use increases by over 20% under the first modification, and water consumption increases by approximately 40% while water withdrawals decrease by over 85% under the second modification.  相似文献   

12.
培养藻类制取生物能源的研究   总被引:2,自引:0,他引:2  
能源紧张和环境污染是全世界所面临的共同问题,用藻类替代传统作物生产生物能源是生物质能的重要发展方向之一。文章介绍了国内外对藻类培养条件、光生物反应器型式、藻类基因工程、藻细胞收集方法以及能源藻类生产系统的研究成果。研究认为,以藻类为原料生产生物燃料具有良好的发展前景,并指出了今后能源藻类生长的重点研究方向。  相似文献   

13.
Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.  相似文献   

14.
Solid bioenergy from forests plays — and is expected to continue to play — a key role to fulfil the renewable energy targets at the European Union level. When the Renewable Energy Directive was enacted, sustainability criteria were incorporated solely for biofuels and bioliquids. Sustainability criteria for solid bioenergy are also needed in order to prevent wood and primary forest residues from posing additional environmental risks to ecosystems. Acknowledging this, the European Commission has been working on extending the biofuels and bioliquids provisions to solid biomass. An internal draft was circulated in August 2013 which addressed the ways to both balance and mitigate the risks in three main topics: biodiversity; sustainable forest management; and greenhouse gases. This paper presents a set of criteria and indicators, developed during workshops with experts from Governments, scientific institutions, businesses and NGOs, that may be considered by the EU to assure that solid biomass from forests is obtained in an environmentally sustainable way.  相似文献   

15.
ABSTRACT Nebraska is well endowed with water, particularly groundwater, but has few fossil fuel reserves. However, it is located adjacent to states which have almost no water but have enormous quantities of coal and oil shale. Recent court cases facilitate the movement of water from water-rich states such as Nebraska to water-short states, such as Colorado and Wyoming. The possibility of an energy-water partnership exists and raise numerous policy questions. Within Nebraska, energy consumption patterns are similar to those of the nation's, with consumption of electricity in the agricultural sector growing fastest. Water consumption in the state is dominated by agriculture, and future development of groundwater for irrigation is expected to be intense. Although water and energy are both factors of economic production, an equivalent amount of water consumption provides more jobs in the energy industries than in agriculture. Water and energy are also interdependent. Each is required to produce the other and conservation of one will cause conservation of the other. If both agriculture and electricity are involved, such as in irrigation, the conservation effects are synergistic. Current water policy in Nebraska is biased toward agriculture relative to the energy industries and provides little incentive for water conservation. Given recent court cases and economic conditions, the advantages and disadvantages of the sale of water for export or the use of water with Wyoming coal for energy development need to be compared systematically with those of using water only for agriculture.  相似文献   

16.
ABSTRACT: A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.  相似文献   

17.
While the energy sector is the largest global contributor to greenhouse gas (GHG) emissions, the agriculture, forestry, and other land use (AFOLU) sector account for up to 80% of GHG emissions in the least developed countries (LDCs). Despite this, the nationally determined contributions (NDCs) of LDCs, including Nepal, focus primarily on climate mitigation in the energy sector. This paper introduces green growth—a way to foster economic growth while ensuring access to resources and environmental services—as an approach to improving climate policy coherence across sectors. Using Nepal as a case country, this study models the anticipated changes in resource use and GHG emissions between 2015 and 2030, that would result from implementing climate mitigation actions in Nepal's NDC. The model uses four different scenarios. They link NDC and policies across economic sectors and offer policy insights regarding (1) energy losses that could cost up to 10% of gross domestic product (GDP) by 2030, (2) protection of forest resources by reducing the use of biomass fuels from 465 million gigajoules (GJ) in 2015 to 195 million GJ in 2030, and (3) a significant reduction in GHG emissions by 2030 relative to the business-as-usual (BAU) case by greater use of electricity from hydropower rather than biomass. These policy insights are significant for Nepal and other LDCs as they seek an energy transition towards using more renewable energy and electricity.  相似文献   

18.
Uncertainty in future water supplies for the Phoenix Metropolitan Area (Phoenix) are exacerbated by the near certainty of increased, future water demands; water demand may increase eightfold or more by 2030 for some communities. We developed a provider-based water management and planning model for Phoenix termed WaterSim 4.0. The model combines a FORTRAN library with Microsoft C# to simulate the spatial and temporal dynamics of current and projected future water supply and demand as influenced by population demographics, climatic uncertainty, and groundwater availability. This paper describes model development and rationale. Water providers receive surface water, groundwater, or both depending on their portfolio. Runoff from two riverine systems supplies surface water to Phoenix while three alluvial layers that underlie the area provide groundwater. Water demand was estimated using two approaches. One approach used residential density, population projections, water duties, and acreage. A second approach used per capita water consumption and separate population growth estimates. Simulated estimates of initial groundwater for each provider were obtained as outputs from the Arizona Department of Water Resources (ADWR) Salt River Valley groundwater flow model (GFM). We compared simulated estimates of water storage with empirical estimates for modeled reservoirs as a test of model performance. In simulations we modified runoff by 80%-110% of the historical estimates, in 5% intervals, to examine provider-specific responses to altered surface water availability for 33 large water providers over a 25-year period (2010-2035). Two metrics were used to differentiate their response: (1) we examined groundwater reliance (GWR; that proportion of a providers' portfolio dependent upon groundwater) from the runoff sensitivity analysis, and (2) we used 100% of the historical runoff simulations to examine the cumulative groundwater withdrawals for each provider. Four groups of water providers were identified, and discussed. Water portfolios most reliant on Colorado River water may be most sensitive to potential reductions in surface water supplies. Groundwater depletions were greatest for communities who were either 100% dependent upon groundwater (urban periphery), or nearly so, coupled with high water demand projections. On-going model development includes linking WaterSim 4.0 to the GFM in order to more precisely model provider-specific estimates of groundwater, and provider-based policy options that will enable "what-if" scenarios to examine policy trade-offs and long-term sustainability of water portfolios.  相似文献   

19.
ABSTRACF: Examination of a series of studies of the economically efficient water allocations in the Upper Colorado River, Yellowstone River, and Great Basins indicate that water is not a serious general physical constraint on the development of energy resources, so long as public institutions do not hinder the exchange of water rights in markets. Energy development will cause limited impacts on other water-using sectors, principally agriculture. There appears to be little reason to develop large-scale water storage facilities, even during periods of reduced water production. Water storage developments appear to be necessary only when institutional constraints severely restrict water rights markets and transfers.  相似文献   

20.
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号