首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Carbon Dioxide Capture and Storage (CCS) technology has the potential to enable large reductions in global greenhouse gas emissions, but one of the unanswered questions about CCS is to what extent it will be accepted by the public. To provide insight regarding risk perception as an important component that will influence the public acceptance of CCS, this study discusses different notions of risk and their varying uses by the public, who generally use a social constructivist risk perspective, and risk experts, who generally use a realist perspective. Previous studies discussing the public acceptance of CCS have relied on survey response data and/or focus groups. This study instead uses the psychometric theory of public risk perception to postulate how the public is likely to respond to efforts to use geologic storage of CO2, a component of the CCS architecture. Additionally this paper proposes further actions that could favorably impact the public's perception of risk from geologic storage projects. Through the psychometric analysis this study concludes that the risks of geologic storage are likely to eventually be considered no worse than existing fossil fuel energy technologies. However, since geologic storage of CO2 is a new technology with little operational experience, additional field tests and a demonstrated ability to mitigate problems should they arise will be necessary to improve the public's perception of risk from CCS technologies.  相似文献   

2.
Recent years have witnessed a proliferation of studies on public perceptions of carbon capture and storage (CCS), accompanied by efforts to translate such knowledge into toolkits for public engagement and communication. At the same time, both literature and toolkits have paid little attention to the organisational dynamics and views of project implementers with regard to public engagement. Here we investigate the views of project development consortia employees in five European CCS projects, focusing on their experience of organisational norms and structures relating to engagement. Finding that planning for this engagement has, in several cases, been hampered by a lack of shared internal vision on engagement and communication within the project consortia, at least initially, we draw upon the socio-technical approach to technology embedment and new institutional theory, to observe that internal organisational alignment is crucial in multi-organisational projects when seeking effective public engagement and communication. We observe that this aspect of internal organisation is not yet reflected in the toolkits and guidelines designed to aid engagement in CCS projects. Engagement guides need to direct the attention of project implementers not only in specific outward directions, but also towards reflexively considering their own internal structures, perspectives, motivations, expectations and aims in relation to engagement and communication practice.  相似文献   

3.
In Part 1, we presented the findings of the EU ACCSEPT project (2006–2007) with regards to scientific, technical, legal and economic issues. In Part 2, we present the analysis of social acceptability on the part of both the lay public and stakeholders. We examine the acceptability of CO2 capture and geological storage (CCS) within the Clean Development Mechanism (CDM) of the Kyoto Protocol. The debate over the inclusion of CCS within the CDM is caught-up in a set of complex debates that are partly technical and partly political and, therefore, difficult, and time-consuming, to resolve. We explore concerns that support for CCS will detract from support for other low-carbon energy sources. We can find no evidence that support for CCS is currently detracting from support for renewable energy sources, though it is probably too early to detect such an effect. Efforts at understanding, engaging with, and communicating to, the lay public and wider stakeholder community (not just business) in Europe are currently weak and inadequate, despite well-meaning statements from governments and industry.  相似文献   

4.
Carbon capture and storage (CCS) technology has been endorsed by the IPCC and the UK government as a key mitigation option but remains on the cusp of wide-scale commercial deployment. Here we present a technology roadmap for CCS, depicted in terms of external factors and short- and long-term pathways for its development, moving from a demonstration to commercialisation era. The roadmap was been developed through a two-phase process of stakeholder engagement; the second phase of this, a high level stakeholder workshop, is documented here. This approach has provided a unique overview of the current status, potential and barriers to CCS deployment in the UK. In addition to the roadmap graphics and more detailed review, five consensus conclusions emerging from the workshop are presented. These describe the need for a monetary CO2 value and the financing of carbon capture and storage schemes; the lack of technical barriers to the deployment of demonstration scale CCS plant; the role of demonstration projects in developing a robust regulatory framework; key storage issues; the need for a long-term vision in furthering both the technical and non-technical development of CCS.  相似文献   

5.
The implementation of geological storage of CO2 requires not only further research and development but also the demonstration of carbon dioxide capture and storage (CCS) technology as a viable option. A pilot program is an important first step towards building industry and community confidence in the application of CCS. The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), Australia's leading research organisation in CCS, has initiated a comprehensive research and demonstration program in the Otway Basin in South-West Victoria. As the first project of its kind in Australia, the Otway Basin Pilot Project (OBPP) has faced a number of regulatory and organisational challenges while having to concurrently address public perception. The Otway Basin site with its natural CO2 accumulations and many depleted natural gas fields offers an appropriate CO2 storage site to test scientific and regulatory concepts and evaluate public response through social research. The project aims to show that CO2 can be safely captured, transported and stored deep underground under local conditions, and also monitored and verified. Planning has been ongoing for over a year, baseline studies are underway and the project is targeted to start injection in 2007.  相似文献   

6.
The inclusion of CO2 capture and storage (CCS) in the Kyoto Protocol's Clean Development Mechanism (CDM) is still subject to controversy and discussion. A myriad of barriers prevents CCS in the CDM. Apart from political barriers, economic, social and procedural barriers play a role. This paper discusses relevant new results on the human capacity, procedural feasibility and economic potential of CCS in the CDM. The conclusions of a capacity building effort in Africa show that awareness and knowledge are low but that capacity building efforts are well received. A reality check on methodologies for hypothetical CCS projects shows that most of the issues can be resolved, and the CDM institutional arrangements can accommodate CCS. A bottom-up estimate of the potential of natural gas processing CCS in the CDM, based on a previously proprietary database from the oil and gas industry, suggests that there is an annual potential of about 174 MtCO2 in 2020 in that sector. Most of that potential can be realized at CER prices between $20 and $30/tCO2 but there is no sign of flooding the CDM market with cheap credits from CCS projects. Despite these results and more open information, the CCS and CDM debate, progress in the negotiations on CCS in the CDM is slow and there is no clear view on a solution.  相似文献   

7.
With rising levels of atmospheric carbon dioxide (CO2), a portfolio of mitigation options is deemed essential as we transition to a low carbon economy. Carbon dioxide capture and storage (CCS) is one technology that has the potential to mitigate large amounts of CO2 and governments around the world, along with industry and researchers working in the technology space, are excited by this. However, the technology still remains relatively unknown in the minds of most lay citizens and is therefore less well accepted than more traditional forms of power generation. This paper reviews a number of CCS communication research activities that have been undertaken internationally since 2002 and synthesizes them into a logical roadmap of activities. The paper also examines the common strengths and weaknesses of the research activities and makes a number of suggestions for industry representatives and policy makers. The paper also outlines a way to segment stakeholder groups for all communication activities into four target audiences including: influential others; community; education and project specific activities.  相似文献   

8.
The potential to capture carbon from industrial sources and dispose of it for the long-term, known as carbon capture and sequestration (CCS), is widely recognized as an important option to reduce atmospheric carbon dioxide emissions. Specifically, CCS has the potential to provide emissions cuts sufficient to stabilize greenhouse gas levels, while still allowing for the continued use of fossil fuels. In addition, CCS is both technologically-feasible and commercially viable compared with alternatives with the same emissions profile. Although the concept appears to be solid from a technical perspective, initial public perceptions of the technology are uncertain. Moreover, little attention has been paid to developing an understanding of the social and political institutional infrastructure necessary to implement CCS projects. In this paper we explore a particularly dicey issue--how to ensure adequate long-term monitoring and maintenance of the carbon sequestration sites. Bonding mechanisms have been suggested as a potential mechanism to reduce these problems (where bonding refers to financial instruments used to ensure regulatory or contractual commitments). Such mechanisms have been successfully applied in a number of settings (e.g., to ensure court appearances, completion of construction projects, and payment of taxes). The paper examines the use of bonding to address environmental problems and looks at its possible application to nascent CCS projects. We also present evidence on the use of bonding for other projects involving deep underground injection of materials for the purpose of long-term storage or disposal.  相似文献   

9.
Stakeholder involvement (SI) can include many activities, from providing information on a website to one-on-one conversations with people confronting an issue in their community. For carbon dioxide capture and storage (CCS), there are now quite a few surveys of public attitudes towards CCS that are being used to inform the design of SI efforts. These surveys, focused on the nascent commercial deployment of CCS technologies, have demonstrated that the general public has little knowledge about CCS—yet the surveys go on to collect what are known as “pseudo opinions” or “non-attitudes” of respondents who know little or nothing about CCS. Beyond establishing the lack of knowledge about CCS, the results of these surveys should not be relied upon by the larger CCS community and public and private decision makers to inform the critical task of implementing and executing SI activities. The paper discusses the issues involved in providing information as part of the survey, maintaining that such information is never unbiased and thus tends to produce pseudo opinions that reflect the pollster's or researcher's bias. Other content and methodological issues are discussed, leading to the conclusion that most of the survey results should be used neither as a gauge of public attitudes nor as an indication of public acceptance. Then the framing of SI in CCS is examined, including the assumptions that clear stakeholder acceptance is a realistic goal and that the public has a decisive say in choosing the energy technologies of the present and the future. Finally, a broader suite of SI activities is recommended as more suited to realistic and contextual goals.  相似文献   

10.
The ACCSEPT project, which ran from January 2006 to December 2007, identified and analysed the main factors which have been influencing the emergence of CO2 capture and geological storage (CCS) within the European Union (EU). The key clusters of factors concern science and technology, law and regulation, economics, and social acceptance. These factors have been analysed through interviews, a large-scale questionnaire conducted in 2006, and discussions in two stakeholder workshops (2006 and 2007). In Part I of this paper, we aim to distil the key messages and findings with regards to scientific, technical, legal and economic issues. There are no compelling scientific, technical, legal, or economic reasons why CCS could not be widely deployed in the forthcoming decades as part of a package of climate change mitigation options. In order to facilitate this deployment, governments at both the EU and Member State levels have an important role to play, in particular in establishing a robust and transparent legal framework (e.g. governing long-term environmental liability) and a strong policy framework providing sufficient and long-term incentives for CCS and CO2 transportation networks.  相似文献   

11.
This study estimates the human cost of failures in the CCS industry in 2050, using the actuarial approach. The range of expected fatalities is assessed integrating all steps of the CCS chain: additional coal production, coal transportation, carbon capture, transport, injection and storage, based on empirical evidence from technical or social analogues. The main finding is that a few hundred fatalities per year should be expected if the technology is used to avoid emitting 3.67 GtCO2 year−1 in 2050 at baseload coal power plants. The large majority of fatalities are attributable to mining and delivering more coal. These risks compare to today's industrial hazards: technical, knowable and occupational dangers for which there are socially acceptable non-zero risk levels. Some contemporary European societies tolerate about one fatality per thousand years around industrial installations. If storage sites perform like that, then expected fatalities per year due to leakage should have a minor contribution in the total expected fatalities per year: less than one. But to statistically validate such a safety level, reliability theory and the technology roadmap suggest that CO2 storage demonstration projects over the next 20 years have to cause exactly zero fatality.  相似文献   

12.
As one of the three major carbon capture technologies associated with carbon capture and storage (CCS), oxy-fuel technology is currently undergoing rapid development with a number of international demonstration projects of scale 10–30 MWe having commenced and units with a scale of 250–300 MWe emerging in the progression towards commercialisation. Industrial scale testing of coal combustion and burners is also being conducted by technology vendors.The paper details the current international status of the technology; the contributions of current demonstrations; and a roadmap for commercial deployment.At its current state of maturity oxy-fuel technology may be considered semi-commercial, in that even if a unit was economically viable and could be provided by a vendor, the generator and vendor would need to share the technical risk. This is because guarantees could not at present be provided for operating characteristics associated with mature technologies such as reliability, emissions, ramp rate and spray control. This is due to the maturity of the technology associated with the capability of vendors and associated design and operational uncertainties, associated with a lack of plant experience at scale.The projected development of oxy-fuel technology for first-generation plant is provided, using an ASU for oxygen supply, standard furnace designs with externally recirculated flue gas, and limited thermal integration of the ASU and compression plant with the power plant. Potential features of second generation technology are listed.Listed issues delaying deployment indicate that market, economic, legal and issues of public acceptance are more significant than technical barriers.  相似文献   

13.
This paper reports on European public perceptions of carbon capture and storage (CCS) as determined through six focus groups, one held in each of the UK, the Netherlands, Poland, Germany, Belgium and Spain. The development of opinion and the emergence of concerns were observed via phased exposure to a specially commissioned film providing an overview of CCS technology, its rationale and associated debates, supplemented by additional information on national energy mixes. In general there was a high level of commonality in opinion and concerns across the six countries, with only minor differences. The concerns that emerged were not allayed by the information provided. On the contrary, there was evidence of a shift from initial uncertainty about CCS to negative positions. CCS was generally perceived as an uncertain, end-of-pipe technology that will perpetuate fossil-fuel dependence. Noting the political context to CCS, we conclude that advocates will likely find the European public opinion context a challenging one in which to achieve deployment, particularly for onshore storage, except where local communities perceive real economic or other benefits to CCS.  相似文献   

14.
Public acceptance will be important for the implementation of the geological storage of carbon dioxide (CO2). The purpose of this study is to evaluate how the general public perceives this storage and the factors crucial for its acceptance. Further, this study attempts to analyze and evaluate what kind of information would influence the public acceptance and how. In order to evaluate them, questionnaire surveys concerning the acceptance of CO2 geological storage were conducted among Japanese university students. The questionnaire was designed under the assumption that there were five important factors with regard to the acceptance: risk perception, benefit perception, trust, and two perceptions relating to human interference with the environment (one each for CO2 geological storage and global warming). The questionnaire also investigated the effects of two kinds of information supplied: on natural analogues and on field demonstrations of CO2 storage. The responses were analyzed through confirmatory factor analysis, and the dynamic changes in the perceptions resulting from the supplied information were analyzed. The analysis results include the following: the five factors explained the acceptance very well (>83%), the benefit perception was primarily important for determining public acceptance, and information on the natural analogues decreased the risk perception greatly.  相似文献   

15.
The experience from CO2 injection at pilot projects (Frio, Ketzin, Nagaoka, US Regional Partnerships) and existing commercial operations (Sleipner, Snøhvit, In Salah, acid-gas injection) demonstrates that CO2 geological storage in saline aquifers is technologically feasible. Monitoring and verification technologies have been tested and demonstrated to detect and track the CO2 plume in different subsurface geological environments. By the end of 2008, approximately 20 Mt of CO2 had been successfully injected into saline aquifers by existing operations. Currently, the highest injection rate and total storage volume for a single storage operation are approximately 1 Mt CO2/year and 25 Mt, respectively. If carbon capture and storage (CCS) is to be an effective option for decreasing greenhouse gas emissions, commercial-scale storage operations will require orders of magnitude larger storage capacity than accessed by the existing sites. As a result, new demonstration projects will need to develop and test injection strategies that consider multiple injection wells and the optimisation of the usage of storage space. To accelerate large-scale CCS deployment, demonstration projects should be selected that can be readily employed for commercial use; i.e. projects that fully integrate the capture, transport and storage processes at an industrial emissions source.  相似文献   

16.
CO2 capture and storage (CCS) technology is expected to play an important role in the efforts directed toward long-term CO2 emission reduction. This paper analyzes the cost of the geological storage of CO2 in Japan in order to consider future research, development and deployment (RD&D); these would be based on the information of the obtained cost structure. According to the analysis results, the costs, particularly those of the transportation by pipeline and of CO2 injection, strongly depend on the scale of the facilities. Therefore, the distance of the transportation of CO2 should be minimized in the case of small-scale storage, particularly in Japan. In addition, the potential injection rate per well is another key factor for the injection cost. Based on the analyzed cost, the injection cost of the geological storage of CO2 in Japan for individual storage sites is estimated, and the cost–potential curve is obtained. A mixed-integer programming model has been developed to take into account these characteristics of the CCS technology and its adverse effects arising from the scale of economy with regard to the transportation and injection cost for the geological storage of CO2. The model is designed to evaluate CCS and other CO2 mitigation technologies in the energy systems of Japan. With all these adverse effects due to the scale of economy, the geological storage of CO2 will be one of the important options for CO2 emission reduction in Japan.  相似文献   

17.
In this article, we present a life cycle assessment (LCA) of CO2 capture and storage (CCS) for several lignite power plant technologies. The LCA includes post-combustion, pre-combustion and oxyfuel capture processes as well as subsequent pipeline transport and storage of the separated CO2 in a depleted gas field.The results show an increase in cumulative energy demand and a substantial decrease in greenhouse gas (GHG) emissions for all CO2 capture approaches in comparison with power plants without CCS, assuming negligible leakage within the time horizon under consideration. Leakage will, however, not be zero. Due to the energy penalty, CCS leads to additional production of CO2. However, the CO2 emissions occur at a much lower rate and are significantly delayed, thus leading to different, and most likely smaller, impacts compared to the no-sequestration case. In addition, a certain share of the CO2 will be captured permanently due to chemical reactions and physical trapping.For other environmental impact categories, the results depend strongly on the chosen technology and the details of the process. The post-combustion approach, which is closest to commercial application, leads to sharp increases in many categories of impacts, with the impacts in only one category, acidification, reduced. In comparison with a conventional power plant, the pre-combustion approach results in decreased impact in all categories. This is mainly due to the different power generation process (IGCC) which is coupled with the pre-combustion technology.In the case of the oxyfuel approach, the outcome of the LCA depends highly on two uncertain parameters: the energy demand for air separation and the feasibility of co-capture of pollutants other than CO2. If co-capture were possible, oxyfuel could lead to a near-zero emission power plant.  相似文献   

18.
The CO2 storage capacity of geological reservoirs is of great interest for the selection of potential storage sites in carbon capture and storage (CCS) projects. A detailed analysis essentially requires a thorough understanding of the interaction of forces acting within the system. By defining characteristic quantities for length, time, pressure and velocity, the governing multiphase flow equations can be non-dimensionalised. This allows for the definition of physically sound dimensionless numbers, resembling the ratios of acting forces like viscous, capillary and gravitational forces. An analysis of the relation of forces in reservoirs with different parameter setups allows their intercomparison with respect to their CO2 storage capacity potential. To back up the analysis, a comprehensive reservoir parameter database with more than 1200 reservoirs is analysed and statistical characteristics are derived. Effects of reservoir parameters like depth, temperature, absolute and relative permeability, as well as capillary pressure are investigated. It is shown that dimensionless numbers can be used to qualitatively order reservoirs with respect to the forces acting in the reservoir. Moreover, it is shown that the relative permeability relations together with the residual saturations have a great influence on the balance of forces.  相似文献   

19.
Carbon capture and storage (CCS) may play a central role in managing carbon emissions from the power sector and industry, but public support for the technology is unclear. To address this knowledge gap, and to test the use of discrete choice analysis for determining public attitudes, two focus groups and a national survey were conducted in Canada to investigate the public's perceptions of the benefits and risks of CCS, the likely determinants of public opinion, and overall support for the use of CCS.The results showed slight support for CCS development in Canada, and a belief that CCS is less risky than normal oil and gas industry operations, nuclear power, or coal-burning power plants. A majority of respondents indicate that they would support the use of CCS as part of a greenhouse gas reduction strategy, although it would likely have to be used in combination with energy efficiency and alternative energy technologies in order to retain public support.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号