首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
ABSTRACT: Karst terrane provides a linkage between surface water and ground water regimes by means of caves, sinkholes and swallets, and sinking streams, and facilitates the inter‐watershed transfer of water and contaminants through these subsurface systems. The goal of this study was to develop procedures to identify the sources of degradation of a creek situated in a complex karst‐water system. The study approach consisted of using dye tracing technique to determine subsurface flow paths through the karst system, a water‐sampling network to identify and characterize pollution sources within the surface watershed and subsurface flow regime, and evaluation of analytical data for several water quality parameters. The results of this study provide an interesting perspective of water and contaminant movement in karst‐water systems and pinpoint the sources of stream contamination for a case study site in southwest Virginia where two springs supply water to a contaminated freshwater stream.  相似文献   

2.
Economic costs, water quantity/quality benefits, and cost effectiveness of agricultural best management practices (BMPs) at a watershed scale are increasingly examined using integrated economic‐hydrologic models. However, these models are typically complex and not user‐friendly for examining the effects of various BMP scenarios. In this study, an open source geographic information system (GIS)‐based decision support system (DSS), named the watershed evaluation of BMPs (WEBs), was developed for creating BMP scenarios and simulating economic costs and water quantity/quality benefits at farm field, subbasin, and watershed scales. This DSS or WEBs interface integrated a farm economic model, the Soil and Water Assessment Tool (SWAT), and an optimization model within Whitebox Geospatial Analysis Tools (GAT), an open source GIS software. The DSS was applied to the 14.3‐km2 Gully Creek watershed, a coastal watershed in southern Ontario, Canada that drains directly into Lake Huron. BMPs that were evaluated included conservation tillage, nutrient management, cover crop, and water and sediment control basins. In addition to assessing economic costs, water quantity/quality benefits, and cost effectiveness of BMPs, the DSS can be also used to examine prioritized BMP types/locations and corresponding economic and water quantity/quality tradeoffs in the study watershed based on environmental targets or budget constraints. Further developments of the DSS including interface transfer to other watersheds are also discussed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

3.
Through the Direct/Delayed Response Project (DDRP), the United States Environmental Protection Agency is attempting to assess the risk to surface waters from acidic deposition in three regions of the eastern United States: the Northeast Region, the Southern Blue Ridge Province, and the Mid-Appalachian Region. The central policy question being addressed by the DDRP is: Within the regions of concern, how many surface water systems (lakes, streams) will become acidic due to current or altered levels of acidic sulfur deposition, and on what time scales? The approach taken by the DDRP is to select a statistically representative set of watersheds in each region of concern and to project the future response of each watershed to various assumed levels of acidic deposition. The probability structure will then be used to extrapolate the watershed-specific results to each region. The data will be used also for statistical investigation of hypothesized relationships between current surface water chemistry and watershed characteristics. Because the needed terrestrial data base was not available, regional watershed surveys were conducted to meet the specific data needs of the DDRP. Maps (1∶24,000) of soils, vegetation, land use, depth to bedrock, and bedrock geology were made for each watershed. The soils were grouped into sampling classes based on their hypothesized response to acidic deposition. Randomized sampling of these classes provided regional means and variances of soil properties that can be applied to individual watersheds. Because of DDRP's need for consistency within and among regions, unique quality control/quality assurance activities were developed and implemented. After verification and validation, the DDRP data base will be made publicly available. This will be a unique and useful resource for others investigating watershed relationships on a regional scale. The results of these surveys and the conclusions of the DDRP will be presented in several future papers. The current paper gives an overview of the context, rationale, logistical considerations, and implementation of these surveys, with special emphasis on the field activities of watershed mapping and soil sampling. This discussion should be useful to those planning, implementing, and managing survey activities in support of regional assessments of other environmental concerns, who are likely to face similar choices and constraints.  相似文献   

4.
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed.  相似文献   

5.
The Elbow River watershed in Alberta covers an area of 1,238 km2 and represents an important source of water for irrigation and municipal use. In addition to being located within the driest area of southern Canada, it is also subjected to considerable pressure for land development due to the rapid population growth in the City of Calgary. In this study, a comprehensive modeling system was developed to investigate the impact of past and future land-use changes on hydrological processes considering the complex surface–groundwater interactions existing in the watershed. Specifically, a spatially explicit land-use change model was coupled with MIKE SHE/MIKE 11, a distributed physically based catchment and channel flow model. Following a rigorous sensitivity analysis along with the calibration and validation of these models, four land-use change scenarios were simulated from 2010 to 2031: business as usual (BAU), new development concentrated within the Rocky View County (RV-LUC) and in Bragg Creek (BC-LUC), respectively, and development based on projected population growth (P-LUC). The simulation results reveal that the rapid urbanization and deforestation create an increase in overland flow, and a decrease in evapotranspiration (ET), baseflow, and infiltration mainly in the east sub-catchment of the watershed. The land-use scenarios affect the hydrology of the watershed differently. This study is the most comprehensive investigation of its nature done so far in the Elbow River watershed. The results obtained are in accordance with similar studies conducted in Canadian contexts. The proposed modeling system represents a unique and flexible framework for investigating a variety of water related sustainability issues.  相似文献   

6.
小流域是实现重点流域精准化治理的基本单元,"三生共赢"是指要把解决环境问题的目标定位于生活、生产与生态的协调发展,是实现小流域环境改善和可持续发展的根本路径。本研究立足于流域水环境质量改善,以"三生共赢"和可持续发展理念为指导,提出了基于"三生共赢"的小流域水环境综合治理理论架构,即立足于水环境质量改善和水资源的优化配置,强化流域水环境约束,以尽可能小的环境代价支撑流域经济结构优化、新型城镇化发展,以资源高效和循环利用为核心,大力发展循环经济体系和循环社会体系,并通过创新流域治理体制机制构建成本共担利益共享格局,最终实现小流域社会经济可持续发展。本研究基于以上理论架构设计了生态环境、绿色经济、优质宜居三大类指标体系24项具体指标,并重点从优化流域空间开发格局、构建产业绿色发展体系、改善城乡居民生活环境、提升流域生态系统功能、健全流域治理体制机制等方面分析了小流域水环境综合治理对策。本研究可为各级政府创新流域治理模式、制定小流域水环境综合治理规划提供较为可行的理论支撑和技术体系。  相似文献   

7.
ABSTRACT: A stochastic programming framework is developed to evaluate the economic implications of reliability criteria and multiple effluent controls on nonpoint source pollution. An integrated watershed simulation model is used to generate probability distributions for agricultural effluents in surface and ground water resulting from agricultural practices. Results from the planning model indicate that reliability and multiple effluent constraints significantly increase the cost of nonpoint controls but the effects vary by control alternative. The analysis indicates that an evaluation of multiple water quality objectives can be an important planning tool for designing nonpoint source controls for innovative programs to promote cost-effective water quality regulation.  相似文献   

8.
流域污染物通量测算方法研究   总被引:1,自引:0,他引:1  
流域水系内污染物通量不仅能够用于评价各类污染源的水污染物入河负荷,也是对流域污染特征,水污染物在河流水体中复杂迁移、转化过程的最直观反应。准确测算流域水系内污染物跨界通量及其时空分布是进行流域水环境风险预警和风险管理的重要前提之一。针对目前多种污染物通量测算方法在进行污染物年通量估算时,结果不确定性大这一突出问题,以流域水质监测站年内逐日流量、悬浮颗粒物监测数据作为悬浮颗粒物年通量参考值,基于以月、半月、周为周期的监测策略,将逐日流量、悬浮颗粒物监测数据重新筛选抽样构造,由此,系统分析了不同流域集水面积、污染通量监测频次和目前常用通量估算方法对污染物年通量估算不确定性的影响。所得方法和结论可为进一步制定流域污染物通量的测算规范提供方法指引和技术支持。  相似文献   

9.
Abstract: Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf‐grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface‐water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land‐cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land‐cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over‐estimation of the pesticide use compared to estimates from sales data.  相似文献   

10.
基于流域水质改善与水环境管理需求,结合目前流域非点源水污染排放存在的问题,本研究采用SOA-B/S架构,运用MVC6和GIS与环境模型集成关键技术,构建流域非点源水污染排放清单估算系统,并系统梳理了地形数据、污染源环境统计数据、气象数据等基础信息,采用基于输出系数法的非点源水污染负荷估算模型,实现了对全年及年内各分水期非点源水污染排放清单的处理分析和估算。系统通过数据库、GIS平台、模型集成和业务系统建设,实现了对不同时间和空间尺度下不同地区的非点源水污染负荷估算,推进了流域非点源污染排放的信息化、科学化及可视化管理,为决策者制定流域水环境管理措施和方案提供了有力的技术支持。  相似文献   

11.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

12.
An understanding of groundwater vulnerability in urban watersheds is important for the prevention of both surface water and groundwater contamination and can therefore be a useful tool in brownfield redevelopment and land use planning. Although industrial activity in southeastern Michigan has historically been restricted to the urbanized sections of metropolitan Detroit, new industrial development is rapidly taking place in rural and undeveloped areas. Although environmentalists and urban planners agree that industrial site recycling in urban centres (a.k.a. brownfield redevelopment) is preferable to developing green areas, many older sites remain undeveloped due to real and perceived risks. Using a PC-based geographic information system, a conceptual model of solute transport in soil was developed to evaluate potential impacts to both groundwater and surface water quality resulting from industrial development. The model was used to create a map of groundwater vulnerability within the Rouge River watershed of southeastern Michigan. The map has been used to pin-point several rural and undeveloped areas where groundwater quality is threatened by proposed development. It has also clearly demonstrated that many older brownfield sites, within the City of Detroit, are located on materials that have a much lower vulnerability to groundwater contamination and may therefore be far less costly to redevelop than greenfield sites in undeveloped areas of the watershed.  相似文献   

13.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

14.
ABSTRACT: Protecting surface water quality in watersheds undergoing demographic change requires both the management of existing threats and planning to address potential future stresses arising from changing land use. Many reservoirs and threatened waterbodies are located in areas undergoing rapid population growth, and increases in density of residential and commercial land use, accompanied by increased amount of impervious surface area, can result in increased pollutant loading and degradation of water quality. Effective planning to address potential threats, including zoning and growth management, requires analytical tools to predict and compare the impacts of different management options. The focus of this paper is not on developing demographic projections, but rather the translation of such projections into changes in land use which form the basis for assessment of future watershed loads. Land use change can be forecast at a variety of spatial and temporal scales. A semi-lumped, GIS-based, transition matrix approach is recommended as consistent with the level of complexity achievable in most watershed models. Practical aspects of forecasting future land use for watershed assessment are discussed. Several recent reservoir water supply projection studies are used to demonstrate a general framework for simulating changes in land use and resulting impacts on water quality. In addition to providing a technical basis for selecting optimal management alternatives, such a tool is invaluable for demonstrating to different stakeholder groups the trade-offs among management alternatives, both in terms of water quality and future land use patterns within the watershed.  相似文献   

15.
科学划分控制单元是实现流域水环境精准、高效管理的重要基础。为满足新时期中国流域系统治理和“三水”统筹的新要求、新任务,设计建立了一种新的控制单元划分技术方法,将中国重点流域划分为3442个断面控制单元和822个流域控制单元。基于控制单元划分成果,进一步构建了包含流域—流域控制单元—断面控制单元—控制断面—水功能区5个层级逐步细化的流域空间管控体系。实际案例分析与论证表明,新的流域空间管控体系能有效促进流域水环境管理各项措施落地,可进一步推动流域治理科学化、精细化、差异化,并为“三水”统筹提供决策支持。  相似文献   

16.
ABSTRACT: We investigated spatial and temporal relationships among surface and subsurface watershed attributes and stream nutrient concentrations in urbanizing Johnson Creek watershed in northern Oregon. We sampled stream water at eight urban and five nonurban locations from March 1998 through December 1999. We sampled eight wells distributed over the two primary aquifers in the watershed. Using a Geographic Information System (GIS), percentages of landuse attributes within a radius of 30, 91, and 152 m from each sample site were quantified. We analyzed relationships between (1) nutrient concentrations and percentage cover of different landuse attributes, and (2) nutrient concentrations and underlying hydrologic units. We did not find a significant relationship between ground water chemistry and stream water chemistry. We found elevated levels of phosphorus (P) concentrations correlated with urban landuse, while higher nitrogen (N) concentrations were correlated with nonurban (primarily agricultural) landuse. We concluded that elevated levels of N in nonurban areas of Johnson Creek watershed were associated with agricultural practices. We further concluded that urban development factors such as increases in storm drains, dry wells, and impermeable surfaces may be responsible for higher input of P to the stream in urbanizing areas of the Johnson Creek watershed.  相似文献   

17.
Nutrient loading to surface water systems has traditionally been associated with agricultural sources. Sources such as on-site wastewater systems (OWS) may be of concern especially in rural, nonagricultural watersheds. The impact of various point and nonpoint sources including OWS in Turkey Creek Watershed was evaluated using the Watershed Analysis Risk Management Framework, which was calibrated using 10 yr of observed stream flow and total P concentrations. Doubling the population in the watershed or OWS septic tank effluent P concentration increased mean stream total P concentration by a factor of 1.05. Converting all the OWS to a conventional sewer system with a removal efficiency of 93% at the wastewater treatment plant increased the mean total P concentration at the watershed outlet by a factor of 1.26. Reducing the soil adsorption capacity by 50% increased the mean stream total P concentration by a factor of 3.2. Doubling the initial P concentration increased the mean stream total P concentration by a factor of 1.96. Stream flow and sediment transport also substantially affected stream P concentration. The results suggest that OWS contribution to stream P in this watershed is minimal compared with other factors within the simulated time frame of 10 yr.  相似文献   

18.
ABSTRACT: The South Prong watershed is a major tributary system of the Sebastian River and adjacent Indian River Lagoon. Continued urbanization of the Sebastian River drainage basin and other watersheds of the Indian River Lagoon is expected to increase runoff and nonpoint source pollutant loads. The St. Johns River Water Management District developed watershed simulation models to estimate potential impacts on the ecological systems of receiving waters and to assist planners in devising strategies to prevent further degradation of water resources. In the South Prong system, a storm water sampling program was carried out to calibrate the water quality components of the watershed model for total suspended solids (TSS), total phosphorous (TP), and total nitrogen (TN). During the period of May to November 1999, water quality and flow data were collected at three locations within the watershed. Two of the sampling stations were located at the downstream end of major watercourses. The third station was located at the watershed outlet. Five storm events were sampled and measured at each station. Sampling was conducted at appropriate intervals to represent the rising limb, peak, and recession limb of each storm event. The simulations were handled by HSPF (Hydrologic Simulation Program‐Fortran). Results include calibration of the hydrology and calibration of the individual storm loads. The hydrologic calibration was continuous over the period 1994 through 1999. Simulated storm runoff, storm loads, and event mean concentrations were compared with their corresponding observed values. The hydrologic calibration showed good results. The outcome of the individual storm calibrations was mixed. Overall, however, the simulated storm loads agreed reasonably well with measured loads for a majority of the storms.  相似文献   

19.
Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon’s (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions.  相似文献   

20.
Use of impervious cover is transitioning from an indicator of surface water condition to one that also guides and informs watershed planning and management, including Clean Water Act (33 U.S.C. §1251 et seq.) reporting. Whether it is for understanding surface water condition or planning and management, impervious cover is most commonly expressed as summary measurement (e.g., percentage watershed in impervious cover). We use the National Land Cover Database to estimate impervious cover in the vicinity of surface waters for three time periods (2001, 2006, 2011). We also compare impervious cover in the vicinity of surface waters to watershed summary estimates of impervious cover for classifying the spatial pattern of impervious cover. Between 2001 and 2011, surface water shorelines (streams and water bodies) in the vicinity of impervious cover increased nearly 10,000 km. Across all time periods, approximately 27% of the watersheds in the continental United States had proximally distributed impervious cover, i.e., the percentage of impervious cover in the vicinity of surface waters was higher than its watershed summary expression. We discuss how impervious cover spatial pattern can be used to inform watershed planning and management, including reporting under the Clean Water Act.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号