首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November–December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.  相似文献   

2.
This is the first comprehensive study of sources of variation in metal concentrations within the whole tissues of a shallow burrowing, filter-feeding intertidal clam, Austrovenus stutchburyi. Samples were collected from 12 sites in April, August, November and February in 1993–1994 in the vicinity of Otago Harbour and Peninsula, New Zealand. Total tissue trace metal concentrations (μg g−1 dry weight) were measured in individual animals for the essential metals : Mn, Cu, Zn, Ni and the non-essential Cr using trace-metal clean acid-digestion and ICP-OAES techniques. Average metal concentrations were 3–60 μg g−1 for Cu, 40–118 μg g−1 for Zn, 2–12 μg g−1 for Mn, 5–35 μg g−1 for Ni and 1–44 μg g−1 for Cr. These levels decreased with body weight and differed amongst sites except for Cr in February (mid-summer). Highest concentrations occurred at sites close to a city (Dunedin) and within the central harbour region although the Cu, Zn, Ni and Cr concentrations did not correlate with the environmental gradient or season. At one coastal site, samples of both the blue mussel Mytilus galloprovincialis and cockles gave similar trends in trace metal levels. These results suggest that the cockle could be a useful trace metal biomonitor within NZ estuaries.  相似文献   

3.
In the present research, accumulation of Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined in sediments and fillet, liver, kidney, gonads, and gills of three commonly fish species in the largest wetland ecosystem that is located in southwest of Iran; Shadegan wetland. Shadegan is one of the most important wetland that posses various fauna and flora but suffers inputs from agricultural and industrial activities. So, sediment samples and fish species including Barbus grypus, Barbus sharpeyi, and Cyprinus carpio were collected during winter 2009. Results showed that mean concentrations of trace elements (except Ni and Co) were high in liver and gills of B. grypus. Also trace elements had the most accumulation in liver of B. sharpeyi except for Cd (0.26 mg kg − 1 d.w.) and Mn (13.45 mg kg − 1 d.w.) that were high in gills. Beside, kidney is determined as target tissue for Ni and V in B. grypus and for Pb in C. carpio, due to their high concentration. Zn levels in all tissues of C. carpio showed the highest concentrations in comparison to other fish species. Generally, accumulations of most of the studied elements in B. grypus and B. sharpeyi were higher in females than in males, while in fillet and gonads of C. carpio, this trend was inverted. Bioaccumulation factors (BAFs) were determined for different tissues of fish species with respect to elemental concentrations in sediment. BAFs results indicated that Zn, Pb, and Cu have higher BAF than other elements. Also this investigation demonstrated that trace elements have different affinities with condition factor of studied fish species. Gonadosomatic index (GSI) and Pb showed positive correlation together in both B. sharpeyi and B. grypus, respectively, in females and males. Moreover, females of C. carpio showed significantly positive relation of GSI and all studied elements.  相似文献   

4.
Lichens have been used as bioindicators in various atmospheric pollution assessments in several countries. This study presents the first data on levels of heavy metals (As, Cd, Cu, Ni, Pb, and Zn) in lichens at different locations in Singapore, Southeast Asia. Singapore is a fully industrialised island nation, with a prevailing tropical climate and a population of 4 million people within a confined land area of less than 700 km2. The ubiquitous lichen species, Dirinaria picta was collected from six sample sites across Singapore and analysed for heavy metals using inductively coupled plasma mass spectrometry (ICPMS). No significant relationship existed between metal levels in lichen and soil, indicating that accumulated metals in lichen are primarily derived from the atmosphere. Peak concentrations of zinc (83.55 μg g−1), copper (45.13 μg g−1) and lead (16.59 μg g−1) in lichens were found at Sembawang, Jurong and the National University of Singapore campus which are locations associated with heavy petroleum and shipping industries, and road traffic respectively. The mean heavy metal levels of lichen samples in Singapore were found to be at the upper range of values reported in the literature for temperate countries.  相似文献   

5.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

6.
With the long-term application of wastewater to vegetable production fields, there is concern about potential health risks of heavy metals contaminating the edible parts of vegetables grown in contaminated soils in the suburban areas of Baoding City, China. The average concentration of elemental Zn in sewage-irrigated soil was the highest (153.77 mg kg−1), followed by Pb (38.35 mg kg−1), Cu (35.06 mg kg−1), Ni (29.81 mg kg−1), and Cd (0.22 mg kg−1) which were significantly higher (P < 0.05) than those in the reference soil. The results showed that long-term sewage irrigation had led to a growing accumulation of heavy metals in the soils, especially for Cd, Zn, and Pb. Furthermore, the concentrations of elemental Cd, Zn, and Ni in vegetables (e.g., Beassica pekinensis L., Allium fistulosum L., Spinacia oleracea L.) collected from the wastewater-irrigated soils exceeded the maximum permissible limits, and this also increased the daily intake of metals by food. However, compared with the health risk index of <1 for heavy metals, the ingestion of vegetables from the soils irrigated with sewage effluent posed a low health risk. Nevertheless, heavy metal concentrations should be periodically monitored in vegetables grown in these soils together with the implementation effective remediation technologies to minimize possible impacts on human health.  相似文献   

7.
The concentrations of trace metals (Cu, Zn, Mn, Ni, and Fe) from suspended particulate matter (SPM) and biota in Izmir Bay (Eastern Aegean Sea) were studied in order to evaluate the environmental impact of the anthropogenic metals before building of Wastewater Treatment Plant. SPM samples were collected in wet and dry periods from Izmir Bay. Metal concentrations in SPM (Cu, 0.36–2.19; Mn, 0.07–11.3; Ni, 0.43–7.81; Zn, 7.33–269; Fe, 1.00–266 μgdm − 3) were comparable to those reported for other moderately polluted bays. Maximum metal concentrations in SPM were observed during summer season. SPM metal concentrations displayed a clear spatial trend with values increasing with proximity to urban centers. Cu and Zn concentrations in SPM were especially high in the inner bay. SPM were found to be contaminated by Zn. The vertical profile of Mn, Zn, and Ni concentrations in SPM had a maximal value at the upper layer and decreased to minimal value at the bottom layer of the inner bay in summer, in contrast to the observed pattern of Fe and Cu. Maximum Cu concentrations were obtained in Penaeus kerathurus. Also, maximum Zn and Fe concentrations were found in Mytilus galloprovincialis. Relatively high Cu levels were found in Sardina pilcardus and Mullus barbatus than other fish species. Besides, Cu levels were lower in Diplodus annularis and Merluccius merluccius. Finally, metal levels in biota tissues were lower than the limits of European Dietary Standards and Guidelines.  相似文献   

8.
The Odiel salt marshes (Marismas del Odiel) are an important nature area declared a Biosphere Reserve, but they are greatly affected by pollution from the Odiel River. Surface sediments from this area were analysed using the latest version of the BCR sequential extraction procedure to determine the fractionation of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn among four geochemical phases (acid-soluble, reducible, oxidisable and residual). The total content of each of the metals and As was also determined. The results showed high concentrations of As, Cd, Cu, Pb and Zn, with maximums of 791 mg kg−1 of As, 8.5 mg kg−1 of Cd, 2,740 mg kg−1 of Cu, 1,580 mg kg−1 of Pb and 3,920 mg kg−1 of Zn. The concentrations of Cr, Mn and Ni were low since there are no sources of pollution by them in the area. A comparison of the metal and As levels with the sediment quality guidelines showed that the pollution is sufficient to produce noxious effects in aquatic organisms in most of the Odiel salt marshes. Based on the chemical distribution of the elements, it was found that Cd and Zn were the most mobile (i.e., elements that can pass easily into the water under changing environmental conditions). However, Cr, Fe, Ni and As were present in the greatest percentages in the residual fraction, which implies that these elements are strongly linked to the sediments.  相似文献   

9.
Plants of Eichhornia crassipes grown at various levels of cadmium ranging from 0.1 to 100 μg ml−1 accumulated Cd in a concentration and duration dependent manner. At all levels, Cd accumulation by various plant tissues followed the order roots shoot leaves. Approximately 80% of total Cd was accumulated by plant at highest concentration (100 μg ml−1) used in the experiment. Cadmium induced phytotoxicity appears at 25.0 μg ml−1 resulting into reduced levels of chlorophyll, protein and in vivo nitrate reductase activity of the plant. However, a slight induction of these physiological variables was obtained at lowest Cd (0.1 μg ml−1) concentration. In contrast, carotenoid content increased at highest Cd concentration i.e., 100 μg ml−1. Similar effects at low and high levels of Cd was obtained with respect to mitotic index and micronuclei in root meristem of the plant. It could be inferred that Cd toxicity in plant is differential depending upon the low and high concentration of Cd in the medium.  相似文献   

10.
The aim of the present work is the assessment of metal toxicity in runoff, in their contaminated soils and in the groundwater sampled from two mining areas in the region of Marrakech using a microbial bioassay MetPLATE™. This bioassay is based on the specific inhibition of the β-galactosidase enzyme of a mutant strain of Escherichia coli, by the metallic pollutants. The stream waters from all sampling stations in the two mines were all very toxic and displayed percent enzyme inhibition exceeding 87% except SWA4 and SWB1 stations in mine C. Their high concentrations of copper (Cu) and zinc (Zn) confirm the acute toxicity shown by MetPLATE. The pH of stream waters from mine B and C varied between 2.1 and 6.2 and was probably responsible for metal mobilization, suggesting a problem of acid mine drainage in these mining areas. The bioassay MetPLATE™ was also applied to mine tailings and to soils contaminated by the acidic waters. The results show that the high toxicity of these soils and tailings was mainly due to the relatively concentration of soluble Zn and Cu. The use of MetPLATE™ in groundwater toxicity testing shows that, most of the samples exhibited low metal toxicity (2.7–45.5% inhibition) except GW3 of the mine B (95.3% inhibition during the wet season and 82.9% inhibition during the dry season). This high toxicity is attributed to the higher than usual concentrations of Cu (189 μg Cu l−1) and Zn (1505 μg Zn l−1). These results show the potential risk of the contamination of different ecosystems situated to the vicinity of these two metalliferous sites. The general trend observed was an increase in metal toxicity measured by the MetPLATE with increasing total and mobile metal concentrations in the studied matrices. Therefore, the MetPLATE bioassay is a reliable and fast bioassay to estimate the metals toxicity in the aquatic and solids samples.  相似文献   

11.
The long-term variability of total Cu content from fungicides applied in a certified wine region of Spain (La Rioja) and of other metals (Cd, Cr, Ni, Pb, and Zn) was evaluated in three young vineyard soils and subsoils unamended and amended with spent mushroom substrates (SMS) over a 3-year period (2006–2008). SMS is a promising agricultural residue as an amendment to increase the soil organic matter content but may modify the behaviour of metals from pesticide utilisation in vineyards. Fresh and composted SMS was applied each year at a rate of 25 t ha−1 (dry-weight). Copper concentrations in the three unamended soils were 21.2–88.5, 25.5–77.1, and 29.4–78.4 mg kg−1. They exceeded natural Cu concentrations of the region and reference sub-lethal hazardous concentration for soil organism. The concentrations of Cd, Ni, Pb, and Zn were largely below the sub-lethal limits. Thus, although Cu levels were lower than those of established vineyards, vine performance, and productivity might be affected. The variation in behaviour between different amendments for each soil was high, so a generic conclusion could not be drawn. The amendment practice seemed to have caused temporarily Cu mobilization respect to untreated soils. Total zinc concentrations fall within the range of the natural soil of La Rioja and were significantly affected (p < 0.05) especially by fresh state SMS addition, with increasing up to 75% respect to untreated specimen. The results indicated a build-up of fresh sites for metal retention at both surface and subsurface level, although no accumulation of metals was observed in the short-term period. However, the benefit for soils and the negative effects need to be monitored in the long run.  相似文献   

12.
Esmoriz–Paramos lagoon is an ecosystem of great ecological importance that is located on the northwest coast of Portugal and has been degraded as a result of industrial and anthropogenic activities. Concentrations of heavy metals (Cr, Cu, Pb and Zn) were measured in water, sediment and in tissues (liver and muscle) of Liza saliens, which is the dominant fish from the lagoon. Comparisons between metal concentrations in water and sediments were made with those in tissues of fish caught at the lagoon. Metals in water were quantified predominantly bound to particulate and equalled or exceeded the limit of chronic reference values. Metal concentrations in sediments varied among sampled sites. The relative order of concentrations was “Zn > Cu ∼ Pb > Cr” the same pattern observed for metals in water. Metals in fish tissues showed higher concentrations in liver (262 mg Cu·Kg−1 and 89 mg Zn·Kg−1) than in muscle (<3 mg Cu·Kg−1 and 26 mg Zn·Kg−1), while Pb and Cr were not detected. These results suggest that Cu and Zn are the metals of major concern in the lagoon. Mullet detritivorous feeding habits, bioaccumulation pattern and the high sediment metals concentrations relative to the water suggest that sediments can be the most important source of contamination in this ecosystem. The positive relationship found between Cu in liver and fish length demonstrates that time of exposure is a crucial factor in bioaccumulation. Condition indices (K and HSI) in mullets from the lagoon were higher compared to mullets from sea, suggesting abnormal condition in the lagoon population. We conclude that metals chronic exposure in the lagoon can impose considerable fish stress. The results also show that the lagoon is an area of environmental concern.  相似文献   

13.
Extensive aquatic or semi-aquatic production of water spinach (Ipomoea aquatica Forssk.) for human consumption takes place in Southeast Asia. The aim of this study was to assess the concentrations of 38 elements in soil and water spinach cultivated under different degrees of wastewater exposure in Hanoi, Vietnam. The results showed no effect of wastewater use on the overall element concentrations in soil and water spinach. Mean soil concentrations for selected potentially toxic elements at the studied field sites had the following ranges 9.11–18.7 As, 0.333–0.667 Cd, 10.8–14.5 Co, 68–122 Cr, 34.0–62.1 Cu, 29.9–52.8 Ni, 32.5–67.4 Pb, 0.578–0.765 Tl and 99–189 Zn mg kg−1 dry weight (d.w.). In all samples Cd, Pb and Zn soil concentrations were below the Vietnamese Guideline Values (TCVN 7209-2002) for agricultural soils whereas As and Cu exceeded the guideline values. Maximum site element concentrations in water spinach were 0.139 As, 0.032 Cd, 0.135 Cr, 2.01 Cu, 39.1 Fe, 57.3 Mn, 0.16 Ni, 0.189 Pb and 6.01 Zn mg kg−1 fresh weight (f.w.). The site and soil content of organic carbon were found to have high influence on the water spinach element concentrations whereas soil pH and the total soil element concentrations were of less importance. The estimated average daily intake of As, Cd, Cu, Fe, Pb and Zn for adult Vietnamese consumers amounts to <11% of the maximum tolerable intake proposed by FAO/WHO for each element. It is assessed that the occurrence of the investigated elements in water spinach will pose low health risk for the consumers.  相似文献   

14.
Dynamics of heavy metals such as Fe, Mn, Zn, Cr, Cu, Co, Ni, Pb, and Cd in surface water of Mahanadi River estuarine systems were studied taking 31 different stations and three different seasons. This study demonstrates that the elemental concentrations are extremely variable and most of them are higher than the World river average. Among the heavy metals, iron is present at highest concentration while cadmium is at the least. The spatial pattern of heavy metals suggests that their anthropogenic sources are possibly from two major fertilizer plants and municipal sewage from three major towns as well as agricultural runoff. The temporal variations for metals like Fe, Cu, and Pb exhibit higher values during the monsoon season, which are related to agricultural runoff. Concentrations of Ni, Pb, and Cd exceed the maximum permissible limits of surface water quality in some polluted stations and pose health risks. Dissolved heavy metals like Fe, Mn, Cr, Ni, and Pb exhibit a non-conservative behavior during estuarine mixing, while Zn, Cu, and Co distribution is conservative. Distribution of cadmium in the estuarine region indicates some mobilization which may be due to desorption. The enrichment ratio data suggest that various industrial wastes and municipal wastes contribute most of the dissolved metals in the Mahanadi River. The Mahanadi River transports 18.216 × 103 t of total heavy metals into the Bay of Bengal and the calculated rate of erosion in the basin is 128.645 kg km − 2 year − 1.  相似文献   

15.
Atmospheric deposition of major and trace elements in Amman, Jordan   总被引:1,自引:0,他引:1  
Wet and dry deposition samples were collected in the capital of Jordan, Amman. Concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V, Zn, Fe, Sr, Mg2+, Ca2+, Na+, K+, Cl, NO3 and SO4 2−, along with pH were determined in collected samples. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4 2− were among the highest. High Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust. However, high SO4 2− concentrations were attributed to the influence of both anthropogenic and natural sources. Except for Cl, NO3 , SO4 2− and Cu, monthly dry deposition fluxes of all measured species were higher than wet deposition fluxes. The annual wet deposition fluxes of trace metals were much lower than those reported for other urban areas worldwide.  相似文献   

16.
Seasonal variation of the concentrations of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured by ICP-AES in the water and sediment from the Saricay Stream, Geyik Dam and Ortakoy Well in the same basin. Comparisons between trace metal concentrations in water and sediment in three sources (Stream, Dam and Well) were made. The concentrations of a large number of trace metals in the water and sediment were generally higher in the Stream than in the Well and Dam, particularly in summer. Trace metal concentration ranges in sediments of the Saricay Stream and its sources showed very wide ranges (as mass ratio): Co: 5–476 μg g−1, Cr: 15–1308 μg g−1, Cu: 7–128 μg g−1, Fe: 1120–13210 μg g−1, Mn: 150–2613 μg g−1, Ni: 102–390 μg g−1, Pb: 0.7–31.3 μg g−1 and Zn: 18–304 μg g−1, whereas Cd was not detected. Trace metal concentration ranges found in waters were: Co: 9.5–20.7 μg L−1, Cr: 20.3–284 μg L−1, Cu: 170–840 μg L−1, Fe: 176–1830 μg L−1, Mn: 29.3–387 μg L−1, and Ni: 4.3–21.9 μg L−1. Among the trace metals studied, Cd and Zn in two seasons and Pb in winter were usually not detected or in the recommended levels. In addition, Cd was not detected in the sediment during the winter season. The analysis of variance (one-way ANOVA) and correlation matrix was employed for the sediment and water samples of the two field surveys (summer and winter) comparison. The three sources showed differences in metal contents. The metal levels in sediments displayed marked seasonal and regional variations, which were attributed to anthropogenic influences and natural processes. In the Saricay Stream, high values of metals during the dry season showed an anthropological effect from small industry firms, e.g.: an olive mill and a dairy farm or water dilution during summer seasons. Finally, the pollution in this basin probably originated from small industrial, low quality coal-burned thermal power plants, and particularly agricultural and domestic waste discharges.  相似文献   

17.
Waste water pollution of industrial areas can answer for the serious consequences of one of the most important environmental threats to the future. In this study, inductively coupled plasma-atomic emission spectrometry method (ICP-AES) is proposed to determine heavy metals (Pb, Cu, Cd, Cr, Zn, Al, Fe, Ni, Co, Mn) and major elements (Ca, Mg) in waste water of Kocabas Stream. The concentration of metals in the waste water samples taken from 9 different stations (St.) in Biga-Kocabas Stream in November 2004 (autumn period) were determined after simple pretreatment of samples by the proposed ICP-AES method. An analysis of a given sample is completed in about 15 min for ICP-AES the method. The results of heavy metals concentrations in waste water were found between 0.00001–77.69610 mg l−1 by the ICP-AES technique. The concentrations of Pb, Cd, Cu, Zn, Cr, Al, Fe, Mn, Ni, Co, Mg and Ca 0.00001 (St.3,6,7) – 0.0087 mg l−1 (St.9), 0.00001 (St.4-7) – 0.0020 mg l−1 (St.8), 0.00001 (St.1,3-7,9) – 0.0041 mg l−1 (St.2), 0.0620 (St.2) – 0.2080 mg l−1 (St.3), 0.0082 (St.6) – 0.2290 mg l−1 (St.8), 0.3580 (St.2) – 1.7400 mg l−1 (St.3), 0.2240 (St.1) – 0.6790 mg l−1 (St.3), 0.0080 (St.1) – 1.5840 mg l−1 (St.3), 0.0170 (St.3) – 0.0640 mg l−1 (St.2), 0.0010 (St.1,4,5,8) – 0.0080 mg l−1 (St.3), 5.0640 (St.9) – 5.2140 mg l−1 (St.1) and 43.3600 (St.2) – 77.6961 mg l−1 (St.9), respectively. Also we measured environmental physicochemical parameters such as temperature, salinity, specific conductivity, total dissolved solid (TDS), pH, oxidation and reduction potential (ORP), and dissolved oxygen (DO) in the waste water at sampling stations.  相似文献   

18.
Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore’s coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34–2.04, 0.013–0.109, 0.07–0.35, 0.23–1.16, 0.28–0.78, 0.009–0.062 and 0.97–3.66 μg L−1 respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16–0.73, 6.72–53.93, 12.87–118.29, 4.34–60.71, 1.10–6.08 and 43.09–370.49 μg g−1, respectively. Heavy metal concentrations in sediments ranged between 0.054–0.217, 37.48–50.52, 6.30–21.01, 13.27–26.59, 24.14–37.28 and 48.20–62.36 μg g−1 for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.  相似文献   

19.
The present study deals with the effect of fireworks on ambient air quality during Diwali Festival in Lucknow City. In this study, PM10, SO2, NO x and 10 trace metals associated with PM10 were estimated at four representative locations, during day and night times for Pre Diwali (day before Diwali) and Diwali day. On Diwali day 24 h average concentration of PM10, SO2, and NO x was found to be 753.3, 139.1, and 107.3 μg m−3, respectively, and these concentrations were found to be higher at 2.49 and 5.67 times for PM10, 1.95 and 6.59 times for SO2 and 1.79 and 2.69 for NO x , when compared with the respective concentration of Pre Diwali and normal day, respectively. On Diwali day, 24 h values for PM10, SO2, and NO x were found to be higher than prescribed limit of National Ambient Air Quality Standard (NAAQS), and exceptionally high (7.53 times) for PM10. On Diwali night (12 h) mean level of PM10, SO2 and NO x was 1,206.2, 205.4 and 149.0 μg m−3, respectively, which was 4.02, 2.82 and 2.27 times higher than their respective daytime concentrations and showed strong correlations (p < 0.01) with each other. The 24 h mean concentration of metals associated with PM10 was found to be in the order of Ca (3,169.44) > Fe (747.23) > Zn (542.62) > Cu (454.03), > Pb (307.54) > Mn (83.90) > Co (78.69) > Cr (42.10) > Ni (41.47) > Cd (34.69) in ng m−3 and all these values were found to be higher than the Pre Diwali (except Fe) and normal day. The metal concentrations on Diwali day were found to be significantly different than normal day (except Fe & Cu). The concentrations of Co, Ni, Cr and Cd on Diwali night were found to be significantly higher than daytime concentrations for Pre Diwali (control). The inter correlation of metals between Ca with Pb, Zn with Ni and Cr, Cu with Co, Co with Mn, Ni with Cd, Mn with Cd, Ni with Cd and Cr, and Cr with Cd showed significant relation either at p < 0.05 or P < 0.01 levels, which indicated that their sources were the same. The metals Cu, Co, Ni, Cr and Cd showed significant (p < 0.01) association with PM10. These results indicate that fireworks during Diwali festival affected the ambient air quality adversely due to emission and accumulation of PM10, SO2, NO x and trace metals. ITRC Communication Number 2538  相似文献   

20.
In the present paper, seven heavy metals (Pb, Cd, Ni, Cu, Zn, Cr and Fe) in canned salmon, sardine and tuna fish were determined by using atomic absorption spectroscopy. Cadmium and lead levels were determined by graphite tube AAS whereas Ni, Cu, Cr and Fe were determined by flame AAS. Analytical results were validated by spiking the samples with various concentrations of these metals for recovery. The metal contents, expressed in μg/g, wet weight, varied depending upon the specie studied. The levels of Pb ranged from 0.03–1.20 μg-g−1 with an average of 0.313 μg-g−1 for salmon; 0.03–0.51 μg-g−1 with an average of 0.233 μg-g−1 for tuna and 0.13–1.97 μg-g−1 with an average of 0.835 μg-g−1 for sardines. The levels of Cd ranged from 0.02–0.38 μg-g−1 with an average of 0.161 μg-g−1 for salmon; 0.07–0.64 μg-g−1 with an average of 0.227 μg-g−1 for tuna and 0.010–0.690 μg-g−1 with an average of 0.183 μg-g−1 for sardines. Comparative evaluation of these metals in three varieties of fish showed that average concentration of lead in sardines is about 4 times and Ni about 3 times higher as compared to tuna. Generally, the levels of these metals follow the order sardine > salmon > tuna. The data generated in the present study compared well with the similar studies carried out in different parts of the world. The results indicate that canned fish, in general and tuna in particular, have concentrations within permissible limits of WHO/FAO levels for these heavy metals. Therefore, their contribution to the total body burden of these metals can be considered as negligibly small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号