首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
广州市大气中多环芳烃分布特征、季节变化及其影响因素   总被引:37,自引:16,他引:21  
李军  张干  祁士华 《环境科学》2004,25(3):7-13
对广州市大气中气态和颗粒态多环芳烃(PAHs)进行了连续一年的采样观测.结果表明,气态和颗粒态样品中PAHs的平均浓度值分别为312.9 ng/m3 和 23.7 ng/m3,即多环芳烃主要存在于气相中,占大气总PAHs年平均的92.5%,且在夏季的比重要高于冬季.所检出的的气态多环芳烃以芴、菲、蒽等低环数化合物为主,其中菲占了总含量的60%以上;颗粒态多环芳烃则以高环数的化合物为主,各化合物所占的比重相当,其相对浓度无显著差别.气态多环芳烃在夏季达到高值,冬季降为低值;而颗粒态与其相反,夏季低值,冬季达到高值.在所测定的气象条件中,温度在影响气态多环芳烃浓度变化的因素中占了绝对优势,其次为风速,其它气象因素未观测到有较明显的影响作用;对颗粒态多环芳烃来说,则无绝对的影响因素,温度、风速和湿度同为重要影响因素,但随着分子量的增加,各因素的影响大小顺序略有不同.  相似文献   

2.
为研究城市屋面径流中16种US EPA优控多环芳烃(PAHs)的污染特征,采集并分析了上海3次降雨事件典型屋面径流中颗粒相和溶解相PAHs的质量浓度,对屋面径流中PAHs的质量浓度特征、动态变化过程、来源解析以及潜在的生态风险进行了分析与讨论.结果表明,屋面径流中溶解相∑16PAHs的质量浓度为33.9~581.5ng/L,颗粒相PAHs的质量浓度为134.6~27528ng/L,3种屋面径流PAHs含量基本为:瓦屋面>水泥屋面>沥青屋面;不同类型的屋面径流中PAHs组分具有明显的相似性,均以3~4环组分为主,苯并[a]芘BaP的场次降雨事件平均浓度(EMC)值为17.4~378.5ng/L,超过我国规定的污水中BaP排放标准.源解析结果表明,瓦屋面径流中PAHs的主要来源为机动车排放源和燃煤源;沥青屋面和水泥屋面径流中PAHs主要来源于机动车排放源、燃煤源和石油类泄露和挥发源.屋面径流中PAHs毒性当量浓度为6.08~16.86ng/L,超过我国规定的标准限值,对环境存在一定的危害,应引起足够的重视.  相似文献   

3.
珠江三角洲大气细颗粒物的致癌风险及源解析   总被引:11,自引:6,他引:5       下载免费PDF全文
胡珊  张远航  魏永杰 《中国环境科学》2009,29(11):1202-1208
于2004年4、7、10月和2005年1月对广州、深圳大气细颗粒物(PM2.5)中17种多环芳烃(PAHs)的浓度进行了分析,以苯并[a]芘(BaP)为毒性参照物的致癌毒性当量浓度(BaPeq),通过线性剂量-反应模型计算了呼吸致癌风险水平,结合源排放谱和化学质量平衡受体模型(CMB),研究了对致癌风险的各排放源贡献.结果表明,PAHs的浓度为5.87~63.36ng/m3,平均浓度深圳为32.68 ng/m3,广州为28.15ng/m3,且呈冬高夏低的分布规律.BaP和BaPeq日均超标率达到2.78%和5.56%,相对于WHO的日均标准的超标率达到50.0%和61.1%.该地区呼吸致癌风险平均水平为1×10-6~1×10-5,高于日常活动所致风险,低于引起关注的最低风险值.共解析出3种OC及致癌风险的排放源,分别为燃煤排放、机动车排放、生物质燃烧,其中燃煤排放和生物质燃烧贡献最大,对OC及BaPeq的贡献呈现相似规律.  相似文献   

4.
珠江澳门水域水柱多环芳烃初步研究   总被引:24,自引:4,他引:20  
对采自澳门水域水柱不同深度水样溶解相及颗粒相(悬浮颗粒物)中的多环芳烃进行了定量分析。初步结果显示:多环芳烃质量浓度(溶解相和颗粒相)为1854 4~8733 4ng L,其中溶解相多环芳烃质量浓度为892~7944 5ng L,颗粒相为339 4~969 5ng L,16种优控多环芳烃的质量浓度为940~6654ng L;悬浮颗粒物中污染物的质量浓度自水柱表层至底部逐步减小,多环芳烃在颗粒相和溶解相中的分配系数(lgKp)也自上至下呈递减趋势,说明颗粒物主要是以沉降作用和水平迁移过程为主;水柱下层样品中多环芳烃的lgKp值异常升高,与水柱下层水体的悬浮物质量浓度较高以及盐水入侵(盐水楔)作用有关。   相似文献   

5.
上海市大气沉降物中多环芳烃赋存特征及其来源   总被引:2,自引:0,他引:2  
以上海市大气沉降为研究对象,采集了上海市8月、9月、10月3个月的大气沉降物,分析了上海市大气沉降物中16种PAHs的质量浓度、空间分布特征和组成结构,计算了上海市8个采样点∑15PAHs大气沉降物通量.同时,采用正定矩阵因子分解(PMF)模型对大气沉降中的PAHs进行源解析,模型对PAHs的来源有较为细致的判读,结果表明:大气沉降物中∑16PAHs的浓度范围0.458~21.013μg/L,其中,溶解相中∑16PAHs的浓度范围为0.174~0.625μg/L,颗粒相中∑16PAHs的浓度范围为0.275 20.455μg/L.上海市∑15PAHs大气沉降通量在0.24~14.74μg/(m2×d)之间,沉降通量均值为2.77μg/(m2×d).根据PMF模型解析,机动车尾气排放为大气沉降物中PAHs的主要污染物,源贡献率为40.23%,其次,居民烹调、煤炭燃烧、石油挥发泄露和炼焦排放依次占23.73%、14.75%、14.35%和6.92%.  相似文献   

6.
北京地区雨水中溶解态有机氯农药的特征及源解析   总被引:7,自引:1,他引:6       下载免费PDF全文
对2006年5月~2007年11月北京地区雨水中溶解态有机氯农药(OCPs)的组成特征进行分析并对其进行源解析.结果表明,DDTs、HCHs、七氯、氯丹、六氯苯、艾氏剂和狄氏剂7种OCPs被检出,其平均浓度分别为(6.66±4.99)ng/L,(10.30±12.39)ng/L,(2.62±1.87)ng/L,(6.54 ± 4.58)ng/L,(3.99±3.02)ng/L,(2.10±1.40)ng/L和(2.25±1.58)ng/L.OCPs的总浓度在研究期间内呈总体下降趋势,表明北京地区的OCPs污染得到了较好的控制.通过对特征化合物的解析发现,有疑似的林丹和三氯杀螨醇的输入源,各化合物之间显著的相关性说明OCPs的输入途径相似.雨水中的OCPs含量与温度不相关;与降雨量和相对湿度有弱的负相关性;其沉降通量与空气中污染物的浓度相关,与降水量相关性不显著.  相似文献   

7.
为研究黄河包头段冻融过程中PAHs(多环芳烃)的分布特征及来源,分别于2012—2014年流凌期、封河期及融冰期采集黄河包头段干流水相及冰相样品,分析该河段PAHs的时空分布特征,并通过主成分分析法探究污染物的来源. 结果表明,水相中共检测出11种PAHs,ρ(∑11PAHs)的范围为6.58~222.37 ng/L,平均值为61.48 ng/L,其中Fla(荧蒽)为最主要的污染物,部分组分在个别采样点超出了EPA882-Z-99-001中规定的标准限值;冰相中共检测出8种PAHs,ρ(∑8PAHs)的范围为4.91~59.39 ng/L,平均值为27.17 ng/L,ρ(4环PAHs)所占比例最大. ρ(PAHs)在水相与冰相中沿程分布规律一致,S2、S5采样点较高,S4、S7采样点相对较低. 水相冻融过程中,大部分采样点的ρ(PAHs)均在稳定封河时较高. 水相冻融过程中原有7种PAHs反应的信息可由3个因子来代替,分别代表生活污水及工业污废水排放源、煤燃烧排放源及交通源的污染,方差累积贡献率达80.00%.   相似文献   

8.
南水北调中线源头区降雨径流中多环芳烃分布特征   总被引:1,自引:0,他引:1  
研究了南水北调中线源头区降雨径流中多环芳烃的分布特征及来源.根据不同土地利用类型修建了5组径流场收集径流,采用GC/MS对径流中美国EPA优先控制的16种PAHs进行了检测分析.结果表明,3种土地利用类型降雨径流水相中PAHs含量平均值为:耕地(26.53 ng·L^-1)〉栎林(20.91 ng·L^-1)〉果园(1...  相似文献   

9.
珠江广州段水体微表层与次表层中多环芳烃的分布与组成   总被引:6,自引:1,他引:5  
2009年3月对珠江广州段微表层与次表层水中多环芳烃(PAHs)的分布与组成进行了研究.结果表明,珠江广州段微表层和次表层水中16种溶解态PAHs浓度为622.0~2132.2ng·L-1,与DOC存在正相关关系;颗粒态为316.7~639.5ng·L-1,与颗粒物浓度存在明显的线性相关;PAHs的组成以2~3环为主,溶解态中2~3环PAHs占总量的86.0%~95.7%,明显高于颗粒态中2~3环PAHs占总量的(68.8%~84.0%)百分比,PAHs的辛醇-水分配系数及其物理化学性质是造成这一差异的主要原因;微表层对PAHs有一定的富集作用,富集因数EF在1.1~1.5之间(溶解态1.2~1.5,颗粒态1.1~1.3).  相似文献   

10.
利用SPMD技术监测珠江三角洲大气中多环芳烃   总被引:5,自引:0,他引:5  
利用半渗透膜被动采样装置(SPMD),对珠江三角洲地区大气中多环芳烃进行了分季度为期一年的监测,同时在广州(GZ01站)用大流量采样器进行主动采样分析.结果表明,SPMD主要采集大气气态多环芳烃,其富集速率Rs受温度影响显著,低温更有利于SPMD对有机物的渗透富集.大气气态PAHs浓度季节差异明显,各季度平均值分别为286.0ng/m3(4~6月),322.0ng/m3(7~9月),216.4ng/m3(10~12月)和153.3ng/m3(1~3月),温度是影响气态PAHs含量高低的主因素.该区域内,污染程度呈南北低、中间高.污染源主要来自于机动车尾气的排放.  相似文献   

11.
淮河中下游沉积物PAHs的稳定碳同位素源解析   总被引:1,自引:0,他引:1  
对淮河中下游水相、悬浮物、沉积物中的PAHs(多环芳烃)进行定量分析,在探讨其分布特征的基础上,利用单体烃稳定碳同位素技术揭示研究区沉积物中PAHs的来源. 结果表明:水相中正阳关的ρ(PAHs)最高,达5.01 ng/mL;悬浮物和沉积物中以蚌埠闸的w(PAHs)最高,分别为9.85和1 175.02 ng/g. 沉积物中PAHs的δ13C在-39.4‰~-17.6‰之间.正阳关、平圩、洛河和蚌埠闸等采样点的高环PAHs的δ13C比低环PAHs的小,表明高环PAHs富集12C(轻碳同位素),显示燃煤源为主要污染源;但这4个采样点PAHs的δ13C与燃煤烟尘相比存在一定差异,表明除燃煤源外可能还存在着少量其他污染源. 双沟镇高环PAHs的δ13C比低环PAHs的大,表明高环PAHs富集13C(重碳同位素),可能是微生物作用所致.   相似文献   

12.
为调查滹沱河冲洪积扇地下水中多环芳烃(PAHs)的污染状况,采用气相色谱-质谱法对该区16种US EPA优先控制的PAHs进行了分析,并对PAHs的污染水平,空间分布,来源与饮水健康风险进行了调查与评估.结果表明,51个点位中仅有2个点位未检出PAHs, PAHs的浓度范围为未检出~334.3ng/L,平均值为58.0ng/L,低于国内报道的其他地区的污染水平.研究区岗黄水库之间河谷裂隙孔隙水单元(G1),滹沱河冲洪积扇扇顶部孔隙水单元(G2),滹沱河冲洪积扇扇中部孔隙水单元(G3)3个水文地质单元PAHs平均浓度分别为215.2ng/L, 9.8ng/L,9.2ng/L, 其中G1以3~4环PAHs为主,而G2, G3以2~3环PAHs为主.分子比值法污染源解析表明,G1单元地下水PAHs污染源主要为煤与生物质燃烧,而G2, G3单元污染源主要为石油制品.采用US EPA推荐的方法对研究区地下水饮水健康风险进行评价,发现研究区G1单元PAHs饮水终生致癌风险平均值为2.1×10-5,超过可接受水平,应当引起关注.  相似文献   

13.
Despite recent efforts to investigate the distribution and fate of polycyclic aromatic hydrocarbons (PAHs) in air, water, and soil, very little is known about their temporal change in wet deposition. As a result of increased attention to public health, a large-scale survey on the deposition flux and distribution of PAH contamination in rainwater was urgently conducted in Shanghai, China. In this study, 163 rainwater samples were collected from six sites, and 15 PAH compounds were detected by the use of a simple solid phase microextraction (SPME) technique coupled with gas chromatography-mass spectrometry. The dominant PAH species monitored were naphthalene, phenanthrene, anthracene, and fluoranthene. The concentration of total PAHs per event was between 74 and 980 ng/L, with an average value of 481 ng/L, which is at the high end of worldwide figures. The annual deposition flux of PAHs in rainwater was estimated to be 4148 kg/yr in the Shanghai area, suggesting rainfall as a major possible pathway for removing PAHs from the atmosphere. Diagnostic analysis by the ratios of An/178 and Fl/Fl+Py suggested that combustion of grass, wood, and coal was the major contributor to PAHs in the Shanghai region. Back trajectory analysis also indicated that the pollutant sources could be from the southern part of China.  相似文献   

14.
黄浦江表层水体中低环多环芳烃的分布特征   总被引:2,自引:2,他引:2  
2005年12月-2006年5月连续监测黄浦江表层水体中低环多环芳烃(LMWPAHs)含量。结果表明,萘、芴、菲和蒽的平均浓度分别为123ng/L,57.8ng/L,58.8ng/L和11.5ng/L。黄浦江表层水体中LMWPAHs的分布主要受人类活动影响,其总浓度沿黄浦江上中下游逐渐升高,在外滩附近,即S6采样点(311°44′6.2″N,1212°92′1.6E″),S7采样点(311°52′8.9″N,213°21′9.7″E)达到峰值。水体中LMWPAHs浓度受季节影响,冬季浓度明显高于春季。其特征化指数表明,黄浦江表层水体中LMWPAHs主要来自化石燃料的不完全燃烧。  相似文献   

15.
滴水湖及其鲫鱼体内PAHs分布特征与影响因素分析   总被引:1,自引:0,他引:1  
通过测定滴水湖水体、颗粒物和沉积物体系PAHs含量,探讨其分布与组成特征、影响因素及污染来源.结果表明,滴水湖水体中溶解态、颗粒态和沉积物中PAHs平均浓度分别为16.78ng/L、33.02ng/g和40.98ng/g.统计分析表明,水体酸碱度以及电导率与溶解态低环PAHs之间存在显著相关性,总有机碳(TOC)与沉积物中高环PAHs浓度之间存在显著相关性.溶解态的PAHs来源主要表现为草、木和煤的高温燃烧,部分样点表现为石油源;颗粒态PAHs则主要表现为高温燃烧以及石油泄漏源;而沉积物PAHs的来源则较复杂,除了草、木及煤的高温燃烧源和石油泄漏源,还有部分样点表现为石油的高温燃烧源.鲫鱼肌肉、卵部以及鳃部PAHs含量的测定结果表明,鲫鱼不同部位对PAHs的富集能力具有较大差异.鳃部总PAHs含量最高,其次为鲫肉部分,鲫卵所含PAHs浓度最少.与国内外其他研究相比较,滴水湖鲫鱼体内PAHs含量处于较低水平,但鲫鱼部分样品的BaP等当量浓度略高于EPA规定的可食性生物器官中PAHs含量的上限值.  相似文献   

16.
北京东南郊大气中多环芳烃的沉降   总被引:1,自引:1,他引:0       下载免费PDF全文
对2005年3月─2006年1月北京市东南郊气相、总悬浮颗粒物(TSP)以及降尘样品中16种优控PAHs分析发现,降尘样品中2~3环PAHs组分占优势地位,其构成比例与TSP和气相样品差异较大;比较不同采样点、各季节的PAHs沉降速率,对样品中PAHs组分构成比例的特点给予解释,推断PAHs的沉降行为受气象条件、沉降点周围污染源强度以及下垫面性质等因素的影响;对PAHs月均沉降通量与ρ(PAHs)进行相关分析,建立PAHs月均沉降通量与TSP中PAHs总浓度之间的回归方程.   相似文献   

17.
太湖表层沉积物中PAHs和PCBs的分布及风险评价   总被引:24,自引:5,他引:19       下载免费PDF全文
采用GC-EI-MS联用技术分析了太湖18个表层沉积物样品中多环芳烃(PAHs)和多氯联苯(PCBs)的含量.共检出28种PAHs,其总浓度范围为90.6~1.04×103ng/g,其中16种优控PAHs的浓度范围为63.1~885ng/g,最高浓度出现在竺山湖;56种PCBs的浓度范围为1.35~13.8ng/g,最高浓度出现在新塘港.利用分子比和因子分析/多元线性回归模型分析PAHs的来源,结果显示,太湖PAHs主要来源于燃烧,其中木柴、煤炭燃烧和油料燃烧的贡献率分别为45%和50%.PCBs同族体组成分析结果表明,PCBs的同系物组成呈现Aroclor 1242和Aroclor 1254的混合来源特征.太湖表层沉积物中PAHs和PCBs的二 毒性当量(以TCDD计)范围为0.64~3.35pg/g,风险评价结果表明,太湖沉积物中的PAHs和PCBs尚未对周围环境造成不利影响.  相似文献   

18.
广州市大气中颗粒态多环芳烃(PAHs)的主要污染源   总被引:27,自引:1,他引:26  
采用特征化合物与因子分析对广州市大气中颗粒态PAHs的来源及其贡献率进行研究.结果表明,广州大气中颗粒态多环芳烃主要来源是机动车尾气排放和燃煤,其中机动车为主要污染源,占了69%,其次为燃煤,占了31%.冬季大气中颗粒态多环芳烃污染加重的主要原因为低温、无风的气象条件下形成的逆温效应,主要污染源为机动车的尾气排放;夏季颗粒态多环芳烃污染的增大同样是无风时不利于污染物扩散的结果,但此时燃煤对大气中颗粒态多环芳烃污染的贡献要略大于机动车尾气排放.  相似文献   

19.
多环芳烃在珠江口表层水体中的分布与分配   总被引:23,自引:9,他引:14  
为了解河口海岸带水体中多环芳烃(PAHs)的时空分布及其在水体及颗粒相中的分配及其控制因素,于2003年4月(春季)和2002年7月(夏季)采集了珠江河口及近海表层水体,采用GC-MS分析了水体中PAHs.结果表明,珠江河口及近海表层水体中多环芳烃浓度春季(颗粒相:4.0~39.1 ng/L;溶解相:15.9~182.4 ng/L)高于夏季(颗粒相:2.6~26.6 ng/L,溶解相:13.0~28.3 ng/L).河流径流、悬浮颗粒物含量及光降解程度是控制水体PAHs浓度的主要因素.水体中以3环PAHs为主,伶仃洋内样品比珠江口外样品相对富集5,6环PAHs,夏季样品较春季样品相对富集3环PAHs.颗粒物的来源和组成是造成这种差别的主要原因.PAHs在颗粒相及水相中的分配系数(Kp)随颗粒有机碳含量、水体盐度增加而增加,随悬浮颗粒物含量增加而减少.有机碳归一化分配系数(1gKdc)与辛醇/水分配系数(1gKow)间存在明显的线性关系,但高于线性自由能关系模拟值.  相似文献   

20.
成都市PM10中多环芳烃来源识别及毒性评估   总被引:1,自引:0,他引:1  
对成都市2009年冬夏两季可吸入颗粒物(PM10)中16种多环芳烃(PAHs)含量进行了研究,并进一步分析其空间分布、组成特征及来源.结果表明,16种PAHs中15种被普遍检出(Nap未检出),冬季和夏季的ΣPAHs浓度范围分别为40.25~150.68ng/m3和44.51~71.16ng/m3,平均浓度分别为88.36ng/m3和64.21ng/m3.空间分析表明,PAHs浓度在工业区较高,背景点较低.从PAHs组分分析结果显示,低环含量较低,4~6环所占比例较大,其比例范围为86.7%~96.1%.各组分含量季节差异不明显.利用特征化合物比值法、等级聚类法、PCA解析法分析了污染源类型,结果表明成都市PM10中PAHs的主要来源是机动车尾气排放源,以及煤与木材燃烧源.通过BaP当量(BaPE)进行了毒性评估,结果显示成都市冬夏两季的BaPE均值分别为13.41ng/m3和9.54ng/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号