首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在PVDF基体改性的基础上,采用浸渍法制备出Ni/Fe/Al2O3·PVDF催化还原剂。通过对一氯乙酸的脱氯效果研究,对交联液配比及交联时间、不同浓度硫酸镍浸渍时间、镍铁比等因素进行优化,实验优化结果表明,Ni/Fe/Al2O3·PVDF催化还原剂对一氯乙酸脱氯60 min脱氯率达到64%。经SEM表征,制备出的双金属在膜载体表面及断面分布均匀,呈球状和片状结构且双金属未发生团聚。  相似文献   

2.
采用改进液相化学还原法制备纳米Pd/Fe双金属颗粒,研究其钯化率为0.045%和0.135%的条件下分别对3种单氯酚(2-CP、3-CP和4-CP)和3种二氯酚(2,3-DCP、2,4-DCP和2,6-DCP)的脱氯反应。结果表明,合成的纳米Pd/Fe颗粒分散性良好,粒径分布介于25~40nm。纳米Pd/Fe双金属颗粒对单氯酚及二氯酚具有良好的去除效果,3种单氯酚和3种二氯酚的脱氯难易程度分别为2-CP〉4-CP〉3-CP和2,6-DCP〉2,4-DCP〉2,3-DCP,脱氯反应均符合拟一级反应动力学方程。通过还原脱氯实验揭示了分子中氯原子的化学环境对还原脱氯过程具有明显影响。  相似文献   

3.
Pd/Fe催化脱氯水中PCE的动力学研究   总被引:1,自引:1,他引:0  
以GC-MS为分析方法,采用Pd/Fe双金属对水溶液中四氯乙烯(PCE)进行了催化还原脱氯处理,考察了PCE初始浓度、钯含量、Pd/Fe用量和溶液初始pH值等各因素对脱氯效果影响及还原动力学规律。结果表明,Pd/Fe双金属对PCE有较好的还原脱氯效率,反应遵循准一级反应动力学规律,以反应物PCE浓度为参照的反应速率常数K变化范围为0.019min^-1~0.16min^-1,对应的PCE半衰期从6min到36min,揭示反应有可能是在过量的Pd/Fe双金属表面进行。当PCE溶液初始浓度为1mmol/L,投加1.2g钯含量为0.03%的Pd/Fe双金属,在25℃下反应60min,PCE的脱氯率达到95%以上。增大钯含量和Pd/Fe用量可有效提高脱氯率,在初始pH值为弱酸性条件下有利于还原脱氯反应进行。  相似文献   

4.
Ni/Fe双金属降解四氯化碳和四氯乙烯的对比试验   总被引:3,自引:0,他引:3  
以四氯化碳(CT)和四氯乙烯(PCE)为目标污染物,以批试验方法研究Ni/Fe双金属对CT和PCE的还原性脱氯.结果表明:Ni/Fe双金属可有效去除水中的CT和PCE;Ni/Fe双金属对CT和PCE的降解反应均符合准一级反应动力学方程;在相似的反应条件下,Ni/Fe双金属对CT和PCE脱氯的反应速率常数(kobs)之比为1.48和1.67,说明Ni/Fe双金属对CT的脱氯速率要快于对PCE的脱氯速率;Ni/Fe双金属可对PCE完全脱氯,但对CT脱氯过程中产生少量三氯甲烷(TCM).  相似文献   

5.
采用聚合羟基铝交联剂对蒙脱土进行撑柱,合成铝交联黏土(Al-PILC),并以其为载体,制备了应用于C3H6选择还原NO的催化剂Cu/Al-PILE。考察了制备工艺条件及La2O3助剂对催化剂性能的影响,并采用DTA、IR技术对Al-PILC进行表征。研究结果表明,Al-PILE热稳定性随Al/clay比增加逐步提高,SO4^2-改性Al-PILE上SO4^2-与铝氧化柱形成了具有超强酸性的结构,催化活性得到显著提高;当Al/clay比为10mmol/g,浸渍SO4^2-量为20%(wt),Cu担载量为3%(wt),空速20000h^-1时,Cu/Al-PILE在350℃NO转化率达到最大值52.02%;浸渍0.5%La2O3提高了Cu/Al-PILE催化剂的活性和热稳定性。  相似文献   

6.
采用水相共沉淀法制备小尺寸磁性Fe3O4纳米颗粒,以没食子酸作为还原剂和表面修饰剂,还原Ag[(NH3)2]’制备出Fe3O4/Ag磁性纳米颗粒。研究该磁性纳米颗粒对水溶液中铅离子的吸附行为,研究结果表明,pH为7.0,吸附温度30℃时可得到最好的处理效果,铅的去除率可达99.7%以上,Fe3O4/Ag颗粒吸附行为符合二级动力学模型(R2〉0.99)。该磁性纳米颗粒经过多次再生处理后,仍具有很好的吸附效果,表明Fe3O4/Ag在水处理方面拥有良好的应用前景。  相似文献   

7.
以Al2O3为载体,分别采用超声辐射浸渍法和普通浸渍方法制备Fe-Ni-Mn/Al2O3催化剂。采用BET、XRD和SEM对催化剂的理化性质和孔结构进行了分析,以模拟酸性绿B废水为研究对象考察催化剂的催化性能。实验结果表明,浸渍溶液pH值和焙烧温度显著影响催化剂的性能。与普通浸渍法相比,超声浸渍法制备的Fe-Ni-Mn/Al2O3催化剂对酸性绿B脱色反应表现出较高的催化活性。  相似文献   

8.
以Al2O3为载体,分别采用超声辐射浸渍法和普通浸渍方法制备Fe-Ni-Mn/Al2O3催化剂。采用BET、XRD和SEM对催化剂的理化性质和孔结构进行了分析,以模拟酸性绿B废水为研究对象考察催化剂的催化性能。实验结果表明,浸渍溶液pH值和焙烧温度显著影响催化剂的性能。与普通浸渍法相比,超声浸渍法制备的Fe-Ni-Mn/Al2O3催化剂对酸性绿B脱色反应表现出较高的催化活性。  相似文献   

9.
以γ-Al2O3为载体,采用浸渍焙烧法制备了负载型催化剂RuO2-CeO2/γ-Al2O3、Fe2O3-CeO2/γ-Al2O3、Fe2O3/γ-Al2O3。在扬水曝气条件下,以西安某水源水库水为原水,考察了各催化剂对有机微污染物的净化效果,实验发现,催化剂反复多次使用并无明显失活现象,连续使用20 d以消除单纯吸附的影响后,仍然可在7 d内使UV254、CODMn、DOC的去除率分别达到38%、28%和27%。离子溶出实验表明,Fe2O3/γ-Al2O3有很好的稳定性。综合考虑处理效果、制备工艺以及制备成本,选择Fe2O3/γ-Al2O3为最佳催化剂。为了使催化剂Fe2O3/γ-Al2O3具有最佳活性,分别考察了焙烧时间、焙烧温度、浸渍液浓度、浸渍时间等,并对其制备工艺进行了优化。然后反应前后水样的分子量测定结果表明,反应后大分子比例下降,而小分子比例提高,说明催化氧化将一定量的大分子降解成为小分子。  相似文献   

10.
以蒙脱土为载体制备负载型Fe/Al复合氧化物(FeAlOx/MMT)用于催化Fenton反应降解高浓度苯酚废水。实验结果表明,活性相FeAlOx中Fe/Al摩尔比为0.22时制备所得催化剂对Fenton反应具有最佳活性,且Fe/Al复合氧化物并未嵌入蒙脱土层间。在低温和高pH条件下催化体系存在诱导期,诱导期内FeAlOx/MMT缓释出Fe离子并进而由Fe离子催化溶液中的Fenton反应。通过对非均相催化降解苯酚废水的动力学研究发现,H2O2初始浓度、溶液的pH和反应温度对COD降解效率具有显著影响。调节降解过程中的温度序列和氧化剂引入程序能够缓解高温和高双氧水浓度双重因素耦合导致的HO.自消耗。在优化的降解条件下使用理论用量的H2O2可使得1 g/L的苯酚废水中苯酚降解率达到100%,而COD的降解率则达到97%。  相似文献   

11.
以蒙脱土为载体制备负载型Fe/Al复合氧化物(FeAlOx/MMT)用于催化Fenton反应降解高浓度苯酚废水。实验结果表明,活性相FeAlOx中Fe/Al摩尔比为0.22时制备所得催化剂对Fenton反应具有最佳活性,且Fe/Al复合氧化物并未嵌入蒙脱土层间。在低温和高pH条件下催化体系存在诱导期,诱导期内FeAlOx/MMT缓释出Fe离子并进而由Fe离子催化溶液中的Fenton反应。通过对非均相催化降解苯酚废水的动力学研究发现,H2O2初始浓度、溶液的pH和反应温度对COD降解效率具有显著影响。调节降解过程中的温度序列和氧化剂引入程序能够缓解高温和高双氧水浓度双重因素耦合导致的HO.自消耗。在优化的降解条件下使用理论用量的H2O2可使得1 g/L的苯酚废水中苯酚降解率达到100%,而COD的降解率则达到97%。  相似文献   

12.
采用共沉淀法,以Al2O3为载体制备Mn/γ-Al2O3和Mn—Ce/Mn/γ-Al2O3催化剂,并分别在N2气氛和O2气氛下焙烧。采用固定床连续流动反应器,研究所制备催化剂在室温条件下催化臭氧氧化甲苯的性能。通过XRD、XPS和FTIR等手段对催化剂的结构和组成进行表征。结果表明,Mn/Mn/γ-Al2O3催化剂具有良好的催化臭氧氧化甲苯和催化臭氧自身分解的性能,共沉淀法制备催化剂的最佳Mn负载量为20%。O2气氛焙烧和Ce的加入,可以有效提高催化剂的活性和寿命。原因是O2气氛焙烧和Ce的加入可以提高Mn的氧化价态。催化剂失活的主要原因是有机副产物在催化剂表面吸附堆积,失活催化剂在550℃、空气气氛下焙烧可恢复催化性能。  相似文献   

13.
针对常温常压的废水双氧水催化氧化,采用浸渍法制备CuO/y-Al2O3催化剂,利用比表面积、XRD手段表征了制备工艺对催化剂的影响,以模拟苯酚废水为研究对象考察催化剂的催化性能。研究表明,焙烧温度和活性组分含量等显著影响催化剂的性能,催化剂对双氧水催化氧化苯酚溶液具有较高的催化活性。  相似文献   

14.
活性炭纤维(ACF)经硝酸处理后采用浸渍法制备了CeO2-CoO/ACF复合催化剂,测试了其在以氨气为还原剂的低温SCR过程中的催化活性,同时研究了金属氧化物浸渍顺序及负载量、催化剂煅烧温度、空速比(SV)、NH,/NO(摩尔比)、O2含量等因素对NO转化效率的影响。研究发现,负载量为10%的CeO2-CoO/ACF复合催化剂经煅烧后在120—240℃时具有很高的催化活性,并且在N0初始浓度为1000mg/m3、空速比(SV)为6000h~、NH3/NO为1.05、O:体积分数在3.0%时具有较高的NO转化效率。  相似文献   

15.
采用浸渍法制备了不同负载量的Ni(x)Fe(y)/γ-AL2O3催化剂,通过XRD、H2-TPR、BET和SEM对催化剂进行表征,使用微型催化反应装置考察催化剂在以CO作为还原气时,同时脱硫脱硝的催化活性。结果表明,Ni O和Fe2O3做为活性组分可以很好地分散在γ-Al2O3载体上,并且不破坏其结构;Ni(8)Fe(2)/γ-Al2O3催化剂有最佳的脱硫脱硝活性,脱硫率达到96.55%,脱硝率达到97.92%。  相似文献   

16.
以水合肼作为还原剂、PVP作为稳定剂,在碱性条件下借助水热途径制备了Fe Ni3双金属化合物,并对其物相结构与外观形貌进行了表征。在超声协同作用下用自制的Fe Ni3化合物微粉作为催化剂对水溶液中的四氯化碳进行了催化降解处理,考查了超声功率、催化剂加入量、温度和p H值对四氯化碳降解效果的影响,同时,与超声辅助还原铁粉降解四氯化碳进行了比较。结果表明,Fe Ni3化合物对于水溶液中的四氯化碳具有显著的催化降解作用,催化剂投加量增大,四氯化碳的降解率升高。在给定的实验条件下,温度对四氯化碳降解效果的影响最为显著,40℃时,15 min内四氯化碳的降解率即可达到94.61%,而且其降解效果明显优于还原铁粉(68.34%)。  相似文献   

17.
以等体积浸渍法制备了负载型NiOγ/-Al2O3吸附剂,在固定床反应装置上对含苯并噻吩的模型化合物进行反应吸附脱硫实验,考察了NiO负载量、模型化合物硫含量及活性组分的形态对吸附剂脱硫性能的影响,并用XRD、SEM—EDS分析、XPS分析对载体和吸附剂进行了表征。实验结果表明:NiOγ/-Al2O3吸附剂具有较高的穿透硫容,能有效脱除模型化合物中的苯并噻吩;反应过程中生成了NiS;C的沉积以及Ni的硫化物的生成导致了吸附剂的失活。  相似文献   

18.
采用聚合羟基铝交联剂对蒙脱土进行撑柱,合成铝交联黏土(Al-PILC),并以其为载体,制备了应用于C3H6选择还原NO的催化剂Cu/Al-PLIC.考察了制备工艺条件及La2O3助剂对催化剂性能的影响,并采用DTA、IR技术对Al-PILC进行表征.研究结果表明,Al-PILC热稳定性随Al/clay比增加逐步提高,SO2-4改性Al-PILC上SO2-4与铝氧化柱形成了具有超强酸性的结构,催化活性得到显著提高;当Al/clay比为10 mmol/g,浸渍SO2-4量为20%(wt),Cu担载量为3%(wt),空速20 000 h-1时,Cu/Al-PILC在350℃NO转化率达到最大值52.02%;浸渍0.5%La2O3提高了Cu/Al-PILC催化剂的活性和热稳定性.  相似文献   

19.
钯/铝双金属体系对3-氯酚的脱氯降解   总被引:1,自引:0,他引:1  
研究了钯/铝双金属体系对水相中3-氯酚的催化脱氯降解效果,通过置换沉积制备了钯/铝双金属颗粒,考察了该双金属颗粒的稳定性以及溶液pH和钯负载量对脱氯效果的影响。结果表明,pH在4.0以下的酸性条件,钯负载量在1.43%时,可实现水相中3-氯酚的有效脱氯,反应30 min后0.389 mmol/L的3-氯酚转化率可达99%以上,产物主要为苯酚,而钯/铝颗粒在重复测试中能保持较好的稳定性,这与铝基材表面自发形成的氧化膜有关。钯/铝材料表征的结果表明,钯颗粒高度分散在铝基材表面,并极大地提高了铝基材的表面积,从而有助于后续的脱氯反应。  相似文献   

20.
以表面活性剂TritonX-100(TX-100)为洗脱剂,某有机氯农药(organochlorinepesticides,OCPs)污染场地土壤为对象,七氯、氯丹和灭蚁灵为目标污染物,研究微米Cu/Fe双金属对污染土壤洗脱液中OCPs的降解效果。考察了洗脱液中OCPs初始浓度、洗脱液pH值、微米零价铁加入量和cu负载量对Cu/Fe去除OCPs效果的影响。结果表明,微米Cu/Fe可以有效的去除土壤洗脱液中目标污染物。当微米零价铁加入量为1.0g(25g/L),cu负载量为1.0%,洗脱液pH值为6.89时,Cu/Fe对2号土壤洗脱液中七氯、γ-氯丹、α-氯丹和灭蚁灵的去除效果最好,去除率分别为100.0%、99.3%、80.8%和71.1%。洗脱液中OCPs初始浓度越低,微米零价铁加入量越大,Cu/Fe对OCPs去除率越高;偏酸性条件有利于Cu/Fe对γ-氯丹和灭蚁灵的去除,而α-氯丹在中性条件下去除效果最好;1号土壤和2号土壤洗脱液的最佳铜负载量分别为2.O%和1.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号