首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   

2.
Hong J  Lu S  Zhang C  Qi S  Wang Y 《Chemosphere》2011,84(11):1542-1547
A new Vis-Fe0-H2O2-citrate-O2 system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L−1 of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L−1 of H2O2, 12.6 g of Fe0 and 1.0 mmol L−1 of citrate at pH 7.5. Results showed that, in 1 h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe0 surface was found to be at a very low level as <5.4 μmol L−1. Extinguishing tests with isopropanol suggested that RhB oxidation by hydroxyl radicals was the main process taken place in Vis-Fe0-H2O2-citrate-O2 system, which accounted for 75% of substrate removal in 3 h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe0 > H2O2 > citrate > Vis > O2. This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations.  相似文献   

3.
Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5 μM and H2O2 at 300 μM slightly increased cell lethality from a control value of 5.4 ± 0.5% (mean ± standard deviation of four experiments) to 7.8 ± 1.3% and 9.0 ± 0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2 ± 1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3–5 μM) but not on H2O2 concentration (30–300 μM). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn2+ concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn2+, significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn2+-dependent manner.  相似文献   

4.
Liu X  Zhao W  Sun K  Zhang G  Zhao Y 《Chemosphere》2011,82(5):773-777
The conventional hydrothermal reaction with iron powder, NaOH and H2O as reactants was reported to occur at temperature above 423 K, and iron oxides (Fe3O4 and NaFeO2) and hydrogen were produced. In this study, microwave heating was adopted to take the place of conventional heating to induce the hydrothermal reaction. Under microwave irradiation, NaOH and H2O absorbed microwave energy by space charge polarization and dipolar polarization and instantly converted it into thermal energy, which initiated the hydrothermal reaction that involved with zero-valent iron. X-ray diffraction (XRD) analysis found Fe3O4/NaFeO2 and confirmed the occurrence of microwave-induced hydrothermal reaction. The developed microwave-hydrothermal reaction was employed for the dechlorination of PCBs. Hexadecane containing 100 mg L−1 of Aroclor1254 was used as simulative transformer oil, and the dechlorination of PCBs was evaluated by GC/ECD, GC/MS and ion chromatography. For PCBs in 10 mL simulative transformer oil, almost complete dechlorination was achieved by 750 W microwave irradiation for 10 min, with 0.3 g iron powder, 0.3 g NaOH and 0.6 mL H2O added. The effects of important factors including microwave power and the amounts of reactants added, on the dechlorination degree were investigated, moreover, the dechlorination mechanism was suggested. Microwave irradiation combined with the common and cheap materials, iron powder, NaOH and H2O, might provide a fast and cost-effective method for the treatment of PCBs-containing wastes.  相似文献   

5.
Tian X  Li T  Yang K  Xu Y  Lu H  Lin D 《Chemosphere》2012,87(11):1316-1322
Zinc pyrithione is used as an antifouling agent. However, the environmental impacts of zinc pyrithione have recently been of concern. Zinc induces diverse actions during oxidative stress; therefore, we examined the effect of zinc pyrithione on rat thymocytes suffering from oxidative stress using appropriate fluorescent probes. The cytotoxicity of zinc pyrithione was not observed when the cells were incubated with 3 μM zinc pyrithione for 3 h. However, zinc pyrithione at nanomolar concentrations (10 nM or more) significantly increased the lethality of cells suffering from oxidative stress induced by 3 mM H2O2. The application of zinc pyrithione alone at nanomolar concentrations increased intracellular Zn2+ level and the cellular content of superoxide anions, and decreased the cellular content of nonprotein thiols. The simultaneous application of nanomolar zinc pyrithione and micromolar H2O2 synergistically increased the intracellular Zn2+ level. Therefore, zinc pyrithione at nanomolar concentrations may exert severe cytotoxic action on cells simultaneously exposed to chemicals that induce oxidative stress. If so, zinc pyrithione leaked from antifouling materials into surrounding environments would be a risk factor for aquatic ecosystems. Alternatively, zinc pyrithione under conditions of oxidative stress may become more potent antifouling ingredient.  相似文献   

6.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

7.
Byun Y  Koh DJ  Shin DN  Cho M  Namkung W 《Chemosphere》2011,84(9):1285-1289
The effect of polarity on the oxidation of Hg0 was examined in the presence of O2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg0 oxidation at both positive and negative PCDs (∼8 μg Hg W h−1 at following conditions: total flow rate = 2 L min−1 (Hg0 = 50 μg N m−3, O2 = 10%, and N2 balance), temperature = 150 °C, and specific energy density = 5-15 W h N m−3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg0 oxidation because it consumes enough energy (∼15 W h N m−3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m−3) to oxidize Hg0.  相似文献   

8.
In the present study, selected advanced oxidation processes (AOPs)—namely, photo-Fenton (with Fe2+, Fe3+, and potassium ferrioxalate—FeOx—as iron sources), solar photo-Fenton, Fenton, and UV/H2O2—were investigated for degradation of the antineoplastic drug mitoxantrone (MTX), frequently used to treat metastatic breast cancer, skin cancer, and acute leukemia. The results showed that photo-Fenton processes employing Fe(III) and FeOx and the UV/H2O2 process were most efficient for mineralizing MTX, with 77, 82, and 90 % of total organic carbon removal, respectively. MTX probably forms a complex with Fe(III), as demonstrated by voltammetric and spectrophotometric measurements. Spectrophotometric titrations suggested that the complex has a 2:1 Fe3+:MTX stoichiometric ratio and a complexation constant (K) of 1.47 × 104 M–1, indicating high MTX affinity for Fe3+. Complexation partially inhibits the involvement of iron ions and hence the degradation of MTX during photo-Fenton. The UV/H2O2 process is usually slower than the photo-Fenton process, but, in this study, the UV/H2O2 process proved to be more efficient due to complexing of MTX with Fe(III). The drug exhibited no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cells when oxidized by UV/H2O2 or by UV/H2O2/FeOx at the concentrations tested.  相似文献   

9.
A plant injury mathematical model, applied previously to acute and chronic leaf injury data, is used here to model National Crop Loss Assessment Network (NCLAN) data for 15 cultivars and to calculate species parameters from the cultivar analyses. Percent crop yield reduction is estimated as a function of a new parameter, the effective mean O3 concentration: me = [(Σ ch ?1/v)/n]?v, where ch is the hourly average ambient O3 concentration for each daytime hour (defined here as 9:00 A.M.–4:00 P.M., always standard time) of data available at an air sampling site for summer (defined here as June 1–August 31), n is the total number of such available hours, and v is an exposure time-concentration parameter, calculated here to be approximately –0.376. Crop yield reduction for soybean is calculated here as z = 0.478 In (tme 2-66) – 0.42, where z is the Gaussian transform of percent crop reduction, t is the hours of exposure (525 h is used here; 7 h/day for 75 days), and In indicates that the natural logarithm is taken of the quantity within parentheses. Crop yield reductions for seven plant species are estimated with similar equations for each of the 1824 site-years of 1981–1983 hourly O3 concentration data available in the National Aerometric Data Bank (NADB). County-average effective mean O3 concentrations are indicated by shading on a U.S. map. State-average O3 parameters and estimated percent crop yield reductions are tabulated. The National Ambient Air Quality Standard (NAAQS) for O3 specifies that, on the average, the second highest daily maximum 1-h average O3 concentration in a year shall not exceed 0.12 ppm. For years 1981-1983,71% of the NADB sites recorded annual second highest daily maximum 1-h average O3 concentrations below 0.125 ppm (for summer daytime hours). Ambient O3 concentrations reduced the total U.S. crop yield an estimated 5% for years 1981–1983. (Summer, daytime, and all acronyms are always used herein as defined above.)  相似文献   

10.
11.
Chemical oxidation of cable insulating oil contaminated soil   总被引:2,自引:0,他引:2  
Xu J  Pancras T  Grotenhuis T 《Chemosphere》2011,84(2):272-277
Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical oxidation leads to partial removal of highly contaminated soil, therefore chemical oxidation was investigated and optimized aiming at a subsequent bioremediation treatment. Chemical oxidation of cable oil was studied with liquid H2O2 and solid CaO2 as well as permanganate at pH 1.8, 3.0 and 7.5. Liquid H2O2 most effectively removed cable oil at pH 7.5 (24%). At pH 7.5 poor oil removal of below 5% was observed with solid CaO2 and permanganate within 2 d contact time, whereas 18% and 29% was removed at pH 1.8, respectively. A prolonged contact time of 7 d showed an increased oil removal for permanganate to 19%, such improvement was not observed for CaO2.Liquid H2O2 treatment at pH 7.5 was most effective with a low acid use and was best fit to a subsequent bioremediation treatment. To further optimize in situ chemical oxidation with subsequent bioremediation the effect of the addition of the iron catalyst and a stepwise liquid H2O2 addition was performed. Optimization led to a maximum of 46% cable oil removal with 1469 mM of H2O2, and 6.98 mM Fe(II) chelated with citric acid (H2O2:FeSO4 = 210:1 (mol mol−1). The optimum delivery method was a one step addition of the iron catalyst followed by step wise addition of H2O2.  相似文献   

12.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

13.
研究了辉光放电等离子体降解水中典型的环境内分泌干扰物邻苯二甲酸二丁酯(DBP)及降解过程中过氧化氢(H2O2)的生成规律。考察了电解质种类、共存污染物(甲醇、叔丁醇)及催化剂等条件对DBP降解及H2O2生成的影响。结果表明,在硫酸钠溶液中DBP降解效率和H2O2生成速率最高;甲醇、叔丁醇等共存污染物对DBP降解和H2O2生成有抑制作用;Fe2+,Fe3+和Cu2+对DBP的降解有催化作用,其催化效果为Fe2+>Fe3+>Cu2+。用高效液相色谱、离子色谱及气质联用仪等仪器分析了降解中间产物,提出了可能的降解机理。  相似文献   

14.
15.
Numerical precipitation scavenging models are used to investigate the relationship between the inflow concentrations of sulfur species to precipitation systems and the resulting sulfur wet deposition. Simulations have been made for summer and winter seasons using concentration ranges of SO2, aerosol SO42−, H2O2 and O3 appropriate for the eastern U.S. summer simulations use one-dimensional timedependent convective cloud and scavenging models; winter simulations use two-dimensional steady-state warm-frontal models. Sulfur scavenging mechanisms include nucleation scavenging of aerosol, aqueous reactions of H2O2, O3 and HCHO with S(IV), and nonreactive S(IV) scavenging. Over the wide range of conditions that have been examined, the relation between sulfur inflow and sulfur wet deposition varies from nearly linear to strongly nonlinear. The degree of nonlinearity is most affected by aerosol SO42− levels and relative levels of SO2 vs H2O2. Higher aerosol SO42− levels (as found in summer) produce a more linear relation. The greatest nonlinearity occurs when SO2 exceeds H2O2. Winter simulations show more nonlinearity than summer simulations.  相似文献   

16.
Yu DJ  Lai BS  Li J  Ma YF  Yang F  Li Z  Luo XQ  Chen X  Huang YF 《Chemosphere》2012,86(1):70-75
Triclosan is used as an antibacterial agent in household items and personal care products. Since this compound is found in maternal milk of humans and bodies of wild animals, there is growing concern among some consumer groups and scientific community that triclosan is adverse for humans and wild animals. In order to estimate adverse actions of triclosan, the effects of triclosan on intracellular Zn2+ concentration and cellular thiol content were studied in rat thymocytes by the use of flow cytometer with appropriate fluorescent probes. Triclosan at 1-3 μM (sublethal concentrations) increased the intensity of FluoZin-3 fluorescence (intracellular Zn2+ concentration) and decreased the intensity of 5-chloromethylfluorescein (5-CMF) fluorescence (cellular thiol content). Negative correlation (r = −0.985) between triclosan-induced changes in FluoZin-3 and 5-CMF fluorescences was found. Removal of external Zn2+ did not significantly affect the triclosan-induced augmentation of FluoZin-3 fluorescence, suggesting an intracellular Zn2+ release by triclosan. These actions of triclosan were similar to those of H2O2 and triclosan significantly potentiated the cytotoxicity of H2O2. Therefore, the results may suggest that triclosan at sublethal concentrations induces oxidative stress that decreases cellular thiol content, resulting in an increase in intracellular Zn2+ concentration by Zn2+ release from intracellular store(s). Since recent studies show many physiological roles of intracellular Zn2+ in cellular functions, the triclosan-induced disturbance of cellular Zn2+ homeostasis may induce adverse actions on the cells.  相似文献   

17.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

18.
The H2O2/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M1, M2, and M3 following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H2O2. Subsamples of M1, M2, and M3 were then used to create samples M1,E, M2,E and M3,E in which the H2O2 had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M1,E, which was collected early in the photodegradation process, caused 52% inhibition, while M3,E, which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M2, M3, and in M1,E, M2,E and M3,E. The lowest percentages of enzymatic inhibition were observed in samples without removal of H2O2: 13.96% (AChE) and 16% (BChE) for M2, and 24.12% (AChE) and 13.83% (BChE) for M3. These results show the efficiency of the H2O2/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M2 (11 ± 1 mg a.e. L?1 glyphosate and 11 ± 1 mg L?1 H2O2) could be used as a final point for glyphosate treatment with the H2O2/UV process.  相似文献   

19.
王倩  田森林  宁平 《环境工程学报》2014,8(5):1739-1743
研究了KBrO3对二茂铁(Fc)非均相Fenton效能的影响,深入考察了KBrO3对体系中Fc溶解、H2O2分解和羟基自由基(·OH)生成的影响。结果表明,KBrO3的加入对不同反应阶段Fc/Fenton体系的效能均有明显的促进作用,初始阶段主要是由于KBrO3对·OH产生的促进作用所致,后期主要是由于KBrO3促进了体系中Fc的溶解,使得体系中溶解态的Fc催化的均相Fenton反应的比例增加,体系中H2O2的分解加快,·OH的表观生成率增加,进而促进了反应的进行。无KBrO3添加,pH=4,MB初始浓度为10 mg/L,Fc的量为1.6×10-3mol/L,[H2O2]/[MB]=3.14时,45 min时,MB的剩余率为9.1%,105 min时为0。当KBrO3的用量为3×10-4mol/L时,反应45 min后MB的去除率即可达到100%。随着KBrO3浓度的增加,其对Fc/Fenton效能的促进作用增强。  相似文献   

20.
Y. Xu   《Chemosphere》2001,43(8):1281
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号