首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha???1 year???1 in the year 1989 to 13.21 t ha???1 year???1 in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.  相似文献   

2.
This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha?1 year?1; most of the area of the catchment (60 %) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha?1 year?1) and, in 20 % of the catchment, the soil erosion was estimated to exceed >?12 t ha?1 year?1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.  相似文献   

3.
The hilly area of Loess Plateau has some of the highest soil erosion rates in the world, and serious soil erosion causes great losses of plant nutrients. As the most common land use in Loess Plateau, slope farmland contributed most of the erosion soils. This study was designed to examine the effects of land use and slope angle of farmland on phosphorus (P) loss in the hilly area of loess plateau. Farmland (FR), barrenland (BR), and four forest treantment (seabuckthorn+ poplar (SP), immature seabuckthorn (IS), mature seabuckthorn (MS), immature Chinese pine (ICP)) were the types of land use; 10, 15, 20, 25, 30 degrees were the slope angles of FR that were compared. The results showed a larger proportion of P loss occurred in erosion soil fraction of FR, ICP, ICP, and the five slope treatments of FR; in SP, IS, and MS, P loss was primarily through runoff. FR produced more P loss than SP, IS, ICP, BR, and MS. 20∼30 degrees may be the slope ranges for P loss of FR; FR in this ranges would loss more P with soil erosion. SP, IS, and MS were reasonable land uses for their less runoff, soil loss, and P loss. Farmlands over 15 degrees should be abandoned or reforested for it would produce more runoff, soil loss, and P loss.  相似文献   

4.
CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from ??341 to 1,193 mg m???2 h???1, and the mean value over all three forests and sampling times was 286 mg m???2 h???1. CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.  相似文献   

5.
In the Spanish Mediterranean environment, scrub vegetation occupies a greater area than does forest. The impact of wildfire on the scrub vegetation and recovery afterward affects a number of other processes, including water erosion. While recovered vegetation considerably influences soil protection and erosion control, this function has scarcely been studied. This study discusses the behavior and architecture of recovering (or regenerating) typical Mediterranean shrub vegetation and the subsequent impact on soil protection. The study compared two protective forage species (Medicago arborea L. and Psoralea bituminosa L.). The research was performed in field conditions on a set of four experimental plots. A control plot was maintained with no vegetation cover. Runoff and soil loss by water erosion between 1989 and 1992 were studied on each of these plots. The natural vegetation was found to have a more significant protective effect (69.2% decrease in soil loss) than the other species tested. Soil loss on the Medicago plot decreased by 41.7%, and soil loss on the Psoralea plot decreased by 29.3%. That the Psoralea was only recently planted must be considered in evaluating its protective effects.  相似文献   

6.
The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha?1 h?1 year?1. Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha?1 year?1. The soil loss from crop land varied from 2.9 to 3.6 t ha?1 year?1 in low rainfall years to 31.8 to 34.7 t ha?1 year?1 in high rainfall years with a mean annual soil loss of 12.2 t ha?1 year?1. The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha?1 year?1 in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.  相似文献   

7.
Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha-1 year-1 in the same time period. 210Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm-2 year-1 respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year-1. These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.  相似文献   

8.
Soil erosion by water is a major threat to sustainable food production systems in Africa. This study presents a qualitative soil erosion assessment method that links the number of broken ridges (NBRS) observed on a smallholder farmer’s field after a rain event to factors of soil erosion (e.g., rainfall intensity, slope steepness, crop canopy height, and conservation practice) and to soil loss data measured from a runoff plot and receiving small streams. The assessment method consists of a rapid survey of smallholder farmers combined with field monitoring. Results show an indirect relationship between NBRS and factors of soil erosion. Results also show a direct relationship between NBRS and suspended sediment concentrations measured from an experimental runoff plot and receiving streams that drain the sub-watersheds where farmers’ fields are located. Given the limited human and financial resources available to soil erosion research in developing countries, monitoring NBRS is a simple, cost-effective, and reliable erosion assessment method for regions where smallholder farmers practice contour ridging.  相似文献   

9.
Wind erosion is a primary cause of desertification as well as being a serious ecological problem in arid and semi-arid areas across the world. To determine mechanisms for restoring desertified lands, an unrestored shifting sand dune and three formerly shifting sand dunes (desertified lands) that had been enclosed and afforested for 5, 15, and 25 years were selected for evaluation on the south edge of the Tengger Desert, China. Based on sampling heights between 0.2 and 3 m, the critical threshold average wind speed was 6.5 m s?1 at 2 m where the sand transport rate was reduced from 285.9 kg m?2 h?1 on the unrestored dunes to 9.1 and 1.8 kg m?2 h?1 on the sites afforested and enclosed for 5 and 15 years, respectively. The percentage of wind eroded area was reduced from 99.9% on the unrestored dune to 94.5, 9.0, and 0.5% on the sites afforested and enclosed for 5, 15, and 25 years, respectively. Wind erosion was effectively reduced after 15 years. Although there were different driving factors for wind erosion mitigation on the different restoration stages, an increase in the vegetation cover, surface roughness, soil shear strength, soil clay content, organic matter, and reduction in the near-surface wind speed were the primary variables associated with the restoration chronosequence. We conclude that reducing the wind speed and developing a biological crust through vegetation restoration were the critical components for restoration of desertified land.  相似文献   

10.
The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca2+, K+, Na+), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca2+, and K+ values significantly increased, whereas Na+, total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na+ values increased, whereas Ca2+ concentration decreased through time on the control plot. Soil pH, total P, K+, and CEC did not show significant changes through time on the control plot.  相似文献   

11.
The nonpoint source (NPS) pollution is difficult to manage and control due to its complicated generation and formation. Load estimation and source apportionment are an important and necessary process for efficient NPS control. Here, an integrated application of semi-distributed land use-based runoff process (SLURP) model, export coefficients model (ECM), and revise universal soil loss equation (RUSLE) for the load estimation and source apportionment of nitrogen and phosphorus was proposed. The Jinjiang River (China) was chosen for the evaluation of the method proposed here. The chosen watershed was divided into 27 subbasins. After which, the SLURP model was used to calculate land use runoff and to estimate loads of dissolved nitrogen and phosphorus, and ECM was applied to estimate dissolved loads from livestock and rural domestic sewage. Next, the RUSLE was employed for load estimation of adsorbed nitrogen and phosphorus. The results showed that the 12,029.06 t?a?1 pollution loads of total NPS nitrogen (TN) mainly originated from dissolved nitrogen (96.24 %). The major sources of TN were land use runoff, which accounted for 45.97 % of the total, followed by livestock (32.43 %) and rural domestic sewage (17.83 %). For total NPS phosphorous (TP), its pollution loads were 570.82 t?a?1 and made up of dissolved and adsorbed phosphorous with 66.29 and 33.71 % respectively. Soil erosion, land use runoff, rural domestic sewage, and livestock were the main sources of phosphorus with contribution ratios of 33.71, 45.73, 14.32, and 6.24 % respectively. Therefore, land use runoff, livestock, and soil erosion were identified as the main pollution sources to influence loads of NPS nitrogen and phosphorus in the Jinjiang River and should be controlled first. The method developed here provided a helpful guideline for conducting NPS pollution management in similar watershed.  相似文献   

12.
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.  相似文献   

13.
Check dam sediments document the process of soil erosion for a watershed. The main objectives of this research are as follows: first, to determine whether the sediments trapped in check dams can provide useful information about local erosion and the environment, and second, to obtain the extent to which they can be stratigraphically interpreted and correlated to the land use history of an area controlled by check dams. Particle size and the concentration of 137Cs in sediments are the indicators used to study the effects of environmental changes on soil erosion in the Loess Plateau, China. A total of 216 soil samples were collected from four sediment profile cores at the Yangjuangou watershed check dam constructed in 1955 and fully silted with sediments by 1965. The results indicated that 137Cs dating and sediment particle size can characterize the sediment deposition process. Silt makes up more than 50 % of the sediment; both the clay and silt sediment fractions decrease gradually in the upstream direction. The sediment profiles are characterized by three depositional layers. These layers suggest changes in the land use. The top layer showed tillage disturbance, with moderate sediments and new soil mixed from 0 to 20 cm. A transition stage from wetlands (characterized by vegetation such as bulrush) to cropland is inferred from sediments at depths of 20–85 cm. Below 85 cm, sedimentary layering is obvious and there is no tillage disturbance. At the downstream site, A0, the average rate of sediment deposition from 1958 to 1963 was approximately 6,125.4 t year?1 km?2. Because of their high time resolution, check dam sediments indicate the effects of environmental changes on soil erosion, and they can provide a multiyear record of the soil erosion evolution at the local scale in the middle reaches of the Yellow River.  相似文献   

14.
Estimates of soil erosion using cesium-137 tracer models   总被引:1,自引:0,他引:1  
The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kırtas, Peynirli and Kayısalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha−1 year−1 at the Peynirli Hill and 27 t ha−1 year−1 at the Kırtas Hill. With the PM and SMBM in cultivated soils at Kayışalan, the mean annual erosion rates were obtained to be 65 and 116 t ha−1 year−1, respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).  相似文献   

15.
Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest—Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m2 and 883.71 g/m2 indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g?C/m2/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R 2?=?0.562) and the lowest (R 2?=?0.223) under Turkish fir.  相似文献   

16.
This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.  相似文献   

17.
Shiyang River basin is located in Hexi Corridor, central-west Gansu province, northwest China. It is an area of typical arid to semiarid features. Based on the TM image of Liangzhou oasis and Minqin oasis in 1986 and 2000, this paper calculated and analyzed the changes of percentage and area of land use/cover types, and also have got the transformation matrix of the landscape mosaics. Dynamics of runoff and exploitation of groundwater, the most important factors influencing land use changes were also analyzed. The ratio of utilized water quantity in upper and middle reaches to that in lower reaches has increased largely from less than 2 before 1970 reached up to more than 8 since 1995; groundwater exploitation has developed progressively. As a result of overuse of groundwater, the groundwater table lowering obviously, the lowering rates reached up to 0.6–0.8 m/year in some place. In addition, the cropping patterns in study area were also distributed irrefficiently that if the planting percentage of water-wasting grain crops dropped to 50% in both oases, it could save irrigating water by 1.2×108 m3 in Liangzhou oasis and 0.2×108 m3 in Minqin oasis one year.  相似文献   

18.
There has been increasing concern in highlands of semiarid Turkey that conversion of these systems results in excessive soil erosion, ecosystem degradation, and loss of sustainable resources. An increasing rate of land use/cover changes especially in semiarid mountainous areas has resulted in important effects on physical and ecological processes, causing many regions to undergo accelerated environmental degradation in terms of soil erosion, mass movement and reservoir sedimentation. This paper, therefore, explores the impact of land use changes on land degradation in a linkage to the soil erodibility, RUSLE-K, in Cankiri–Indagi Mountain Pass, Turkey. The characterization of soil erodibility in this ecosystem is important from the standpoint of conserving fragile ecosystems and planning management practices. Five adjacent land uses (cropland, grassland, woodland, plantation, and recreational land) were selected for this research. Analysis of variance showed that soil properties and RUSLE-K statistically changed with land use changes and soils of the recreational land and cropland were more sensitive to water erosion than those of the woodland, grassland, and plantation. This was mainly due to the significant decreases in soil organic matter (SOM) and hydraulic conductivity (HC) in those lands. Additionally, soil samples randomly collected from the depths of 0–10 cm (D 1) and 10–20 cm (D 2) with irregular intervals in an area of 1,200 by 4,200 m sufficiently characterized not only the spatial distribution of soil organic matter (SOM), hydraulic conductivity (HC), clay (C), silt (Si), sand (S) and silt plus very fine sand (Si + VFS) but also the spatial distribution of RUSLE-K as an algebraically estimate of these parameters together with field assessment of soil structure to assess the dynamic relationships between soil properties and land use types. In this study, in order to perform the spatial analyses, the mean sampling intervals were 43, 50, 64, 78, 85 m for woodland, plantation, grassland, recreation, and cropland with the sample numbers of 56, 79, 72, 13, and 69, respectively, resulting in an average interval of 64 m for whole study area. Although nugget effect and nugget effect–sill ratio gave an idea about the sampling design adequacy, the better results are undoubtedly likely by both equi-probable spatial sampling and random sampling representative of all land uses.  相似文献   

19.
Magnetic susceptibility (κ) is an easily detectable geophysical parameter that can be used as a proxy or semi-quantitative tracer of atmospheric industrial and urban dusts deposited in topsoil. An enhanced κ value of topsoil is in many cases also associated with high concentrations of soil pollutants (mostly heavy metals). High-resolution magnetic screening of topsoil in areas of high pollution influx is a useful tool for detection of pollution “hot spots”. General and regional screening maps with a grid density of 10 or 5 km have been performed on the basis of forest topsoil measurement only. The purpose of this study was to perform high-resolution magnetic screening with different grid densities in both forested and agricultural areas (arable land). Our large study area (ca. 200 km2) was located in a relatively more polluted region of the central part of Upper Silesia, and a second (small) one (ca. 100 m2) was located in the western part of Upper Silesia, with considerably lower influx of pollution. In the framework of this study, we applied a statistical comparison of data obtained in forested areas and on arable land. The arable soil showed statistically significantly lower κ values, the result of “physical dilution” of the arable layer caused by annual ploughing. Thus arable soils must be avoided during high-resolution field measurement. From semivariograms, it was clear that the spatial correlations in forest topsoil are much stronger than in arable soil, which suggests that a denser measurement grid is required in forested areas.  相似文献   

20.
Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号