首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hsia T. H.  S. L. Lo  C. F. Lin 《Chemosphere》1992,25(12):1825-1837
The adsorption of As(V) by amorphous iron oxide was investigated at 25°C, 0.01 M NaNO3 background electrolyte as a function of solution pH(4–10) at three initial As(V) concentrations and two Fe(III) concentrations. As(V) adsorption increased with decreasing pH. A modified Langmuir isotherm has been used for describing an equilibrium partition existing between solid and liquid phases. The triple-layer model was used for simulating As(V) adsorption on iron oxide surface. This model was able to describe As(V) adsorption over the pH range 4–10, all at the concentrations of As(V) and Fe(III) studied. =Fe(H2AsO4)0, = Fe(HAsO4) and = Fe(AsO4)2− have been shown through simulation with inner-sphere complexation products to be more consistent with experimental adsorption observations than complexation with other surface species.  相似文献   

2.
Burns PE  Hyun S  Lee LS  Murarka I 《Chemosphere》2006,63(11):1879-1891
Leachate derived from unlined coal ash disposal facilities is a potential anthropogenic source of arsenic to the environment. To establish a theoretical framework for predicting attenuation of arsenic by soils subject to ash landfill leachate, which is typically enriched in calcium and sulfate, the adsorption of As(V) and As(III) was characterized from 1 mM CaSO4 for 18 soils obtained down-gradient from three ash landfill sites and representing a wide range in soil properties. As(V) consistently exhibited an order of magnitude greater adsorption than As(III). As(V) adsorption was best described by coupling pH with 15 s DCB-Fe (R2 = 0.851,  = 0.001), although pH coupled to clay, DCB-Fe, or DCB-Al also generated strong correlations. For As(III), pH coupled to Ox–Fe (R2 = 0.725,  = 0.001) or Ox–Fe/Al (R2 = 0.771,  = 0.001) provided the best predictive relationships. Ca2+ induced increases in As(V) adsorption whereas sulfate suppressed both As(V) and As(III) adsorption. Attenuation of arsenic from ash leachate agreed well with adsorption measured from 1 mM CaSO4 suggesting that the use of 1 mM CaSO4 in laboratory adsorption tests is a reasonable approach for estimating arsenic behavior in soils surrounding ash landfills. We also showed that the impact of leachate-induced changes in soil pH over time may not be significant for As(V) adsorption at pH < 7; however, As(III) adsorption may be impacted over a wider pH range especially if phyllosilicate clays contribute significantly to adsorption. The benefits and limitations of predicting arsenic mobility using linearized adsorption coefficients estimated from nonlinear adsorption isotherms or from the relationships generated in this study are also discussed.  相似文献   

3.

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

  相似文献   

4.
Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al(2)O(3), inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al(2)O(3) particles exhibited partial mortality at concentrations of greater than 200mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al(2)O(3) surface, and the calculated LC(50) of As(V) in the presence of nano-Al(2)O(3) was lower than that it was without the nano-Al(2)O(3). The adsorption of As(V) on the nano-Al(2)O(3) surface and the uptake of nano-Al(2)O(3) by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al(2)O(3) was a major reason for the enhanced toxic effect.  相似文献   

5.
Green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O) is an intermediate phase in the formation of iron (oxyhydr)oxides such as goethite, lepidocrocite, and magnetite. It is widely considered that green rust occurs in many soil and sediment systems. Green rust has been shown to reduce sorbed Se(VI), Cr(VI), and U(VI). In addition, it is also reported that green rust does not reduce As(V) to As(III). In this study, we have investigated for the first time the interaction between Sb(V) and green rust using XAFS and HPLC-ICP-MS. Most of the added Sb(V) was adsorbed on green rust, and Sb(III), a reduced form, was observed in both solid and liquid phases. Thus, it was shown that green rust has high affinity for Sb(V), and that Sb(V) was reduced to more toxic Sb(III) by green rust despite the high stability of the Sb(V) species even under reducing condition as reported in previous studies. Therefore, green rust can be one of the most important reducing agents for Sb(V), which can influence the Sb mobility in suboxic environments where green rust is formed.  相似文献   

6.
To test the feasibility of the reuse of iron-rich sludge (IRS) produced from a coal mine drainage treatment plant for removing As(III) and As(V) from aqueous solutions, we investigated various parameters, such as contact time, pH, initial As concentration, and competing ions, based on the IRS characterization. The IRS consisted of goethite and calcite, and had large surface area and small particles. According to energy dispersive X-ray spectroscopy mapping results, As was mainly removed by adsorption onto iron oxides. The adsorption kinetic studies showed that nearly 70 % adsorption of As was achieved within 1 h, and the pseudo-second-order model well explained As sorption on the IRS. The adsorption isotherm results agreed with the Freundlich isotherm model, and the maximum adsorption capacities for As(III) and As(V) were 66.9 and 21.5 mg/g, respectively, at 293 K. In addition, the adsorption showed the endothermic character. At high pH or in the presence of phosphate, the adsorption of As was decreased. When the desorption experiment was conducted to reuse the IRS, 85 % As was desorbed with 1.0 N NaOH. In the column experiment, adsorbed As in real acid mine drainage was 43 % of the maximum adsorbed amount of As in the batch test. These results suggested that the IRS is an effective adsorbent for As and can be effectively applied for the removal of As in water and wastewater.  相似文献   

7.
This study evaluates the behavior of coconut charcoal (AC) to adsorb Cr(VI), As(III), and Ni(II) in mono- and multicomponent (binary and ternary) systems. Batch experiments were carried out for mono- and multicomponent systems with varying metal ion concentrations to investigate the competitive adsorption characteristics. The adsorption kinetics followed the mechanism of the pseudo-second-order equation in both single and binary systems, indicating chemical sorption as the rate-limiting step of adsorption mechanism. Equilibrium studies showed that the adsorption of Cr(VI), As(III), and Ni(II) followed the Langmuir model and maximum adsorption capacities were found to be 5.257, 0.042, and 1.748 mg/g, respectively. In multicomponent system, As(III) and Ni(II) adsorption competed intensely, while Cr(VI) adsorption was much less affected by competition than As(III) and Ni(II). With the presence of Cr(VI), the adsorption capacities of As(III) and Ni(II) on AC were higher than those in single system and the metal sorption followed the order of Ni(II)?>?As(III)?>?Cr(VI). The results from the sequential adsorption–desorption cycles showed that AC adsorbent held good desorption and reusability.  相似文献   

8.
Balaji T  Yokoyama T  Matsunaga H 《Chemosphere》2005,59(8):1169-1174
An adsorption process for the removal of As(V) and As(III) was evaluated under various conditions using zirconium(IV) loaded chelating resin (Zr-LDA) with lysine-Nalpha,Nalpha diacetic acid functional groups. Arsenate ions strongly adsorbed in the pH range from 2 to 5, while arsenite was adsorbed between pH 7 and 10.5. The sorption mechanism is an additional complexation between arsenate or arsenite and Zr complex of LDA. Adsorption isotherm data could be well interpreted by Langmuir equation for As(V) at pH 4 and As(III) at pH 9 with a binding constant 227.93 and 270.47 dm3 mol(-1) and capacity constant 0.656 and 1.1843 mmol g(-1), respectively. Regeneration of the resin was carried out for As(V) using 1 M NaOH. Six adsorption/desorption cycles were performed without significant decrease in the uptake performance. Column adsorption studies showed that the adsorption of As(V) is more favorable compared to As(III), due to the faster kinetics of As(V) compared to As(III). Influence of the coexisting ions on the adsorption of As(V) and As(III) was studied. The applicability of the method for practical water samples was studied.  相似文献   

9.
Mak MS  Lo IM 《Chemosphere》2011,84(2):234-240
This study investigated the removal kinetics and mechanisms of Cr(VI) and As(V) by Fe(0) in the presence of fulvic acid (FA) and humic acid (HA) by means of batch experiments. The focus was on the involvements of FA and HA in redox reactions, metal complexation, and iron corrosion product aggregation in the removal of Cr(VI) and As(V) removal by Fe(0). Synthetic groundwater was used as the background electrolyte to simulate typical groundwater. The results showed faster Cr(VI) removal in the presence of HA compared to FA. Fluorescence spectroscopy revealed that no redox reaction occurred in the FA and HA. The results of the speciation modeling indicate that the free Fe(II) concentration was higher in the presence of HA, resulting in a higher removal rate of Cr(VI). However, the removal of As(V) was inhibited in the HA solution. Speciation modeling showed that the concentration of dissolved metal-natural organic matter (metal-NOM) complexes significantly affected the aggregation of the iron corrosion products which in turn affected the removal of As(V). The aggregation was found to be induced by gel-bridging of metal-NOM with the iron corrosion products. The effects of metal-NOM on the aggregation of the iron corrosion products were further confirmed by TEM studies. Larger sizes of iron corrosion products were formed in the FA solution compared to HA solution. This study can shed light on understanding the relationships between the properties of NOM (especially the content of metal-binding sites) and the removal of Cr(VI) and As(V) by Fe(0).  相似文献   

10.
Xie L  Shang C 《Chemosphere》2006,64(6):919-930
Bromate reduction by Fe(0) with incorporation of copper or palladium was investigated in batch tests. The incorporation of copper led to an increase in the rate of bromate reduction, while incorporation of palladium did not show any effect on bromate reduction by Fe(0), regardless of the bimetal application techniques (either simultaneous addition of Cu(II) or Pd(IV) into the Fe-BrO3- reaction system or using copper or palladium amended iron for bromate removal). Surface analyses by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) techniques indicated that aqueous Cu(II) was reduced and incorporated into the iron surface to form Cu2O and Cu(0). Among these two species, pure Cu(0) is not an active electron donor to the bromate reduction reaction, as shown by there being no reduction from using Cu(0) powders alone and no enhancement by Fe(0) when physically mixed with Cu(0). Although it has been proposed in the literature that the enhancement of adsorption also contributes to the enhancement of chemical reduction, this is not the case here because adsorption decreased when Cu increased. The enhanced bromate reduction rate in the presence of copper observed here is most likely the result of the newly formed active Cu(I). The presence of PdO was evidenced by XPS but yielded no enhancement in bromate reduction. Finally, the Cu2O present on the iron surface because of copper impurities in commercially available iron was found to be involved in the bromate reduction and to accelerate the reduction rate.  相似文献   

11.
Li SX  Zheng FY  Hong HS  Deng NS  Zhou XY 《Chemosphere》2006,65(8):1432-1439
The photo-oxidation of Sb(III) to Sb(V) by marine microalgae (diatom, green and red algae) with or without the presence of transition metals (Fe(III), Cu(II) and Mn(II)). The influence of marine phytoplankton on the photochemistry of antimony was confirmed for the first time. The conversion ratio of Sb(III) to Sb(V) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-oxidizing abilities. The photochemical redox of transition metals could induce the species transformation of antimony. After photo-induced oxidation by marine phytoplankton and transition metals, the ratio of Sb(V) to Sb(III) was in the range of 1.07-5.48 for six algae (Tetraselmis levis, Chlorella autotrophica, Nannochloropsis sp., Tetraselmis subcordiformis, Phaeodactylum tricornutum, and Porphyridium purpureum), and only 0.92 for Dunaliella salina. The distribution of antimony in the sunlit surface seawater was greatly affected by combined effects of marine phytoplankton (main contributor) and transition metals; both synergistic and antagonistic effects were observed. The results provided further insights into the distribution of Sb(III) and Sb(V) and the biogeochemical cycle of antimony, and have significant implications for the risk assessment of antimony in the sunlit surface seawater.  相似文献   

12.
The aim of this investigation was to obtain the hybrid material precursor to the naturally and abundantly available sericite, a mica-based clay; the materials were further employed in the remediation of arsenic from aqueous solutions. The study was intended to provide a cost-effective and environmentally benign treatment technology. The hybrid organo-modified sericite was obtained using hexadecyltrimethylammonium bromide (HDTMA) and alkyldimethylbenzylammonium chloride (AMBA) organic surfactants by introducing regulated doses of HDTMA or AMBA. The materials were characterized using infrared and X-ray diffraction analytical data, whereas the surface morphology was discussed by taking its SEM images. These materials were employed to assess the pre-concentration and speciation of As(III) and As(V) from aqueous solutions. The batch reactor data showed that increasing the sorptive concentration (from 1.0 to 15.0 mg/L) and pH (i.e., pH 2.0 to 10.0) caused the percent uptake of As(III) and As(V) to decrease significantly. The kinetic data showed that a sharp initial uptake of arsenic reached its equilibrium state within about 50 min of contact time, and the sorption kinetics followed a pseudo-second-order rate law both for As(III) and As(V) sorption. A 1,000 times increase in the background electrolyte concentration, i.e., NaNO3, caused a significant decrease in As(III) removal, whereas As(V) was almost unaffected, which inferred that As(III) was adsorbed, mainly by the van der Waals or even by the electrostatic attraction, whereas As(V) was adsorbed chemically and formed “inner-sphere” complexes at the solid/solution interface. The equilibrium state modeling studies indicated that the sorption data fitted well the Freundlich and Langmuir adsorption isotherms. Henceforth, the removal capacity was calculated under these equilibrium conditions. It was noted that organo-modified sericite possessed a significantly higher removal capacity compared to its virgin sericite. Between these two organo-modified sericite, the HDTMA-modified sericite possessed a higher removal capacity compared to the AMBA-modified sericite.  相似文献   

13.
Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was <10 % total soil-borne As with concentrations less than the current Australian maximum residue concentration for cereals. The results indicate that risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75?±?0.52 μg L–1) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was <7 % for total As and <3 % total Sb which is important to consider when estimating the real risk from soil borne As and Sb in the floodplain environment.  相似文献   

14.
As(V) retention capacity is determined by means of adsorption/desorption trials performed for coarse and fine ground mussel shell, forest and vineyard soils with or without fine shell, pine wood ash, oak wood ash, pine sawdust and slate-processing fines. Pine ash shows the highest arsenic retention potential (with >97 % adsorption and ≤1 % desorption), followed by shell-amended forest soil (adsorption between 96 and 92 %), by un-amended forest soil (adsorption between 98 and 86 %) and by the amended vineyard soil (adsorption between 92 and 75 %). Sawdust is the material with the lowest arsenic retention capacity in most cases, with un-amended vineyard soil also showing poor results. In the case of oak ash, As(V) percentage adsorption becomes higher with increasing added arsenic concentrations, while this increase in added arsenic causes lower percentage adsorption in the case of slate fines. Regarding adsorption ability, As(V) adsorption data were fitted to Freundlich and Langmuir models, showing good fitting, with pine ash and shell-amended forest soil having the highest K F values. In view of that, mussel shell amendment would be useful to increase arsenic retention on forest and vineyard soils, while pine ash could be used to retain arsenic even from wastewaters.  相似文献   

15.
Arsenic (As) and antimony (Sb) are chemical analogs that display similar characteristics in the environment. The As hyperaccumulator Pteris vittata L. is a potential As–Sb co-accumulating species. However, when this plant is exposed to different As and Sb speciation, the associated accumulating mechanisms and subsequent assimilation processes of As and Sb remain unclear. A 2-week hydroponic experiment was conducted by exposing P. vittata to single AsIII, AsV, SbIII, and SbV or the co-existence of AsIII and SbIII and AsV and SbV. P. vittata could co-accumulate As and Sb in the pinna (>1000 mg kg?1) with high translocation (>1) of As and Sb from the root to the pinna. P. vittata displayed apparent preference to the trivalent speciation of As and Sb than to the pentavalent speciation. Under the single exposure of AsIII or SbIII, the pinna concentration of As and Sb was 84 and 765 % higher than that under the single exposure of AsV or SbV, respectively. Despite the provided As speciation, the main speciation of As in the root was AsV, whereas the main speciation of As in the pinna was AsIII. The Sb in the roots comprised SbV and SbIII when exposed to SbV but was exclusively SbIII when exposed to SbIII. The Sb in the pinna was a mixture of SbV and SbIII regardless of the provided Sb speciation. Compared with the single exposure of As, the co-existence of As and Sb increased the As concentration in the pinna of P. vittata by 50–66 %, accompanied by a significant increase in the AsIII percentage in the root. Compared with the single exposure of Sb, the co-existence of Sb and As also increased the Sb concentration in the pinna by 51–100 %, but no significant change in Sb speciation was found in P. vittata.  相似文献   

16.
Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent   总被引:7,自引:0,他引:7  
Zhang Y  Yang M  Huang X 《Chemosphere》2003,51(9):945-952
The removal of arsenic(V) by a new Ce-Fe adsorbent was evaluated under various conditions. Under an initial As(V) of 1.0 mg l(-1), the adsorption capacity of the Ce-Fe absorbent was constant around a value of 16 mgg(-1) over a wide pH range (3-7), while a maximum adsorption capacity of 8.3 mgg(-1) was obtained over a narrow pH range around 5.5 for activated alumina, a conventional adsorbent. Kinetics of adsorption obeys a pseudo-first-order rate equation with the rate constant K(ad) as 1.84 x 10(-3) min(-1). The pattern of adsorption of As(V) by the adsorbent fitted well both the Langmuir and Freundlich models. A Langmuir Q(0) of 70.4 mgg(-1) was obtained at an initial pH of 5.0 and temperature of 20 degrees C, significantly higher than those of other adsorbents reported. Phosphate seriously inhibited the removal of As(V) while fluoride did not compete with As(V) even at an F/As molar ratio as high as 30, suggesting that the adsorption sites for As(V) and fluoride were different. Salinity, hardness, and other inorganic anions such as Cl(-), NO(3)(-), and SO(4)(2-) had no apparent effect on As(V) adsorption. Fourier transform infrared spectra of Ce-Fe adsorbent before and after As(V) adsorption demonstrated that M-OH groups plays an important role for As(V) ions removal in the adsorption mechanisms of Ce-Fe adsorbent.  相似文献   

17.
The objective of this study was to determine the As and Sb contents in soils from the Murcia Region of Spain and the possible relationship between the mineralogical composition, soil properties, and As and Sb concentrations. In this study, 490 samples were selected from areas with different characteristics in order to study As and Sb variability. Results show that As and Sb concentrations are positively correlated with the phyllosilicate and quartz content but negatively correlated with the calcite content. The generic reference level (GRL) for these elements was determined according to the Spanish legislation. Established GRL values vary according to the established mineralogical groups, suggesting that GRL has to be determined considering the lithological characteristics of the study area.  相似文献   

18.
When low-cost adsorbents are being used to remove contaminant ions (e.g. arsenate, vanadate, and molybdate) from wastewater, competitive adsorption/desorption are central processes determining their removal efficiency. Competitive adsorption of As, V, and Mo was investigated using equimolar oxyanion concentrations in single, binary, and tertiary combinations in adsorption isotherm and pH envelope studies while desorption of previously adsorbed oxyanions was examined in solutions containing single and binary oxyanion combinations. The low-cost adsorbent materials used were alum water treatment sludge (amorphous hydroxy-Al) and bauxite ore (crystalline Al oxides). Adsorption isotherm and pH envelope studies showed that Mo had only a small effect in decreasing adsorption of As and V but V and As had substantial and similar effects in reducing adsorption of the other. As had a greater effect than V in reducing adsorption of Mo and it was concluded that the affinity of oxyanions for the surfaces of water treatment sludge and bauxite followed the order As > V >> Mo. In 0.3 M NaCl electrolyte, desorption of previously adsorbed oxyanions amounted to 0.3–3.4% for V and As, and 11–20% for Mo. As had approximately four times greater effect than Mo in increasing desorption of V while V had about three times the effect of Mo in increasing desorption of As. Thus, the order of oxyanions in inducing desorption of the other oxyanions (i.e. As on V and As) was the same as that for adsorption selectivity: As > V >> Mo. Water treatment sludge was a more effective adsorbent than bauxite because it had a greater adsorption capacity for all three anions and, in addition, they were held more strongly so desorption in the background electrolyte was proportionately less. It was concluded that at similar molar concentrations, arsenate would tend to reduce adsorption of vanadate as well as displace vanadate already held on adsorbent surfaces while both anions will compete effectively with molybdate. The limiting factor for simultaneous removal of As, V, and Mo from multielement solutions by adsorption will therefore be the removal of Mo.  相似文献   

19.
Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg−1), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg−1), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg−1) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH)6]2, controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content.  相似文献   

20.
In this study, the effects of three widespread heavy metals, As(III), As(V) and Cd, and their binary mixtures on the proteomic profile in D. magna were examined to screen novel protein biomarkers using the two-dimensional gel electrophoresis method (2DE). Ten 20d daphnia were exposed to the LC20 concentrations for each of a total of 8 treatments, including the control, As(III), As(V), Cd, [As(III)+As(V)], [As(III)+Cd], [As(V)+Cd], and [As(III), As(V), Cd], for 24 h before protein isolation. Three replicates were performed for each treatment. These protein samples were employed for 2DE experiments with a pH gradient gel strip from pH 3 to pH 10. The protein spots were detected by a silver staining process and their intensities were analyzed by Progenesis software to discover the differentially expressed proteins (DEPs) in response to each heavy metal. A total of 117 differentially expressed proteins (DEPs) were found in daphnia responding to the 8 treatments and mapped onto a 2D proteome map, which provides some information of the molecular weight (MW) and pI value for each protein. All of these DEPs are considered as potential candidates for protein biomarkers in D. magna for detecting heavy metals in the aquatic ecosystem. Comparing the proteomic results among these treatments suggested that exposing D. magna to binary mixtures of heavy metals may result in some complex interactive molecular responses within them, rather than just the simple sum of the proteomic profiles of the individual chemicals, (As(III), As(V), and Cd).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号