首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 785 毫秒
1.
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.  相似文献   

2.
Surface-applied biosolids, the option most often used on range-lands, can increase the concentration of macronutrients and trace elements in the runoff water and can potentially produce eutrophication or contamination of surface waters. In this study, the effects of postapplication age of biosolids (18, 12, 6, and 0.5 mo) and rate of application (0, 7, 18, 34, and 90 Mg ha(-1)) on the quality of runoff water from shrubland and grassland soils were assessed. Between July and October 1996 simulated rainfall was applied to 0.50-m2 plots for 30 min at a rate of 160 mm h(-1). All of the runoff water was collected. The concentration of NH4+ -N, NO3- -N, PO4(3-)-P, total dissolved phosphorus (TDP), Cu, and Mn in the runoff water increased with rate of biosolids application and decreased with time of postapplication on the two soils. The highest PO4(3-)-P and NH4+ -N concentrations, 4.96 and 97 mg L(-1), respectively, were recorded in the grassland soil treated with 90 Mg ha(-1) of biosolids 0.5 mo postapplication. For the same soil, rate, and postapplication age of biosolids, Cu exceeded the upper limit (0.50 mg L(-1) in drinking water for livestock. Ammonium N and PO4(3-)-P should be the main compounds considered when surface-applying biosolids. Ammonium N at concentrations found in all biosolids-treated plots may affect the quality of livestock drinking water by causing taste and smell problems. Orthophosphate can contribute to eutrophication if the runoff from biosolids-treated areas enter surface waters.  相似文献   

3.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

4.
Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control.  相似文献   

5.
We determined the water quality effect of a restored forested riparian wetland adjacent to a manure application area and a heavily fertilized pasture in the Georgia Coastal Plain. The buffer system was managed based on USDA recommendations and averaged 38 m in width. Water quality and hydrology data were collected from 1991-1999. A nitrate plume in shallow ground water with concentrations exceeding 10 mg NO3-N L(-1) moved into the restored forested riparian wetland. Along most of the plume front, concentrations were less than 4 mg NO3-N L(-1) within 25 m. Two preferential flow paths associated with past hydrologic modifications to the site allowed the nitrate plume to progress further into the restored forested riparian wetland. Surface runoff total N, dissolved reactive phosphorus (DRP), and total P concentrations averaged 8.63 mg N L(-1), 1.37 mg P L(-1), and 1.48 mg P L(-1), respectively, at the field edge and were reduced to 4.18 mg N L(-1), 0.31 mg P L(-1), and 0.36 mg P L(-1), respectively, at the restored forested riparian wetland outlet. Water and nutrient mass balance showed that retention and removal rates for nitrogen species ranged from a high of 78% for nitrate to a low of 52% for ammonium. Retention rates for both DRP and total P were 66%. Most of the N retention and removal was accounted for by denitrification. Mean annual concentrations of total N and total P leaving the restored forested riparian wetland were 1.98 mg N L(-1) and 0.24 mg P L(-1), respectively.  相似文献   

6.
Vegetated buffers strips typically have limited ability to reduce delivery of dissolved phosphorus (DP) from agricultural fields to surface waters. A field study was conducted to evaluate the ability of buffer strips enhanced with drinking water treatment residuals (WTRs) to control runoff P losses from surface-applied biosolids characterized by high water-extractable P (4 g kg(-)(1)). Simulated rainfall (62.4 mm h(-1)) was applied to grassed plots (3 m x 10.7 m including a 2.67 m downslope buffer) surface-amended with biosolids at 102 kg P ha(-1) until 30 min of runoff was collected. With buffer strips top-dressed with WTR (20 Mg ha(-1)), runoff total P (TP = 2.5 mg L(-1)) and total DP (TDP = 1.9 mg L(-1)) were not statistically lower (alpha = 0.05) compared to plots with unamended grass buffers (TP = 2.7 mg L(-1); TDP = 2.6 mg L(-1)). Although the applied WTR had excess capacity (Langmuir P maxima of 25 g P kg(-1)) to sorb all runoff P, kinetic experiments suggest that sheet flow travel time across the buffers ( approximately 30 s) was insufficient for significant P reduction. Effective interception of dissolved P in runoff water by WTR-enhanced buffer strips requires rapid P sorption kinetics and hydrologic flow behavior ensuring sufficient runoff residence time and WTR contact in the buffer. Substantial phosphate-adsorbent contact opportunity may be more easily achieved by incorporating WTRs into P-enriched soils or blending WTRs with applied P sources.  相似文献   

7.
Soil stability and revegetation is a great concern following forest wildfires. Biosolids application might enhance revegetation efforts and enhance soil stability. In May 1997, we applied Metro Wastewater Reclamation District (Denver, CO, USA) composted biosolids at rates of 0, 5, 10, 20, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to improve soil C and N levels and help establish eight native, seeded grasses. The soils on the site belong to the Sphinx series (sandy-skeletal, mixed, frigid, shallow Typic Ustorthents). Vegetation and soils data were collected for four years following treatment. During the four years following treatment, total plant biomass ranged from approximately 50 to 230 g m(-2) and generally increased with increasing biosolids application. The percentage of bare ground ranged from 4 to 58% and generally decreased with increasing biosolids rate. Higher rates of biosolids application were associated with increased concentrations of N, P, and Zn in tissue of the dominant plant species, streambank wheatgrass [Elymus lanceolatus (Scribn. & J.G. Sm) Gould subsp. lanceolatus], relative to the unamended, unfertilized control. At two months following biosolids application (1997), total soil C and N at soil depths of 0 to 7.5, 7.5 to 15, and 15 to 30 cm showed significant (P < 0.05) linear increases (r2 > 0.88) as biosolids rate increased. The surface soil layer also showed this effect one year after application (1998). For Years 2 through 4 (1999-2001) following treatment, soil C and N levels declined but did not show consistent trends. The increase in productivity and cover resulting from the use of biosolids can aid in the rehabilitation of wildfire sites and reduce soil erosion in ecosystems similar to the Buffalo Creek area.  相似文献   

8.
Mine reclamation with biosolids increases revegetation success but nutrient addition well in excess of vegetation requirements has the potential to increase leaching of NO3 and other biosolids constituents. A 3-yr water quality monitoring study was conducted on a Pennsylvania mine site reclaimed with biosolids applied at the maximum permitted and standard loading rate of 134 Mg ha(-1). Zero-tension lysimeters were installed at 1-m depth 1 yr before reclamation: three in the biosolids application area, one in a control area (no biosolids). Before reclamation, all water samples had pH in the range 4.7 to 6.2, acidity < 20 mg L(-1), and very low levels of all other measured parameters. Following reclamation, percolate water in the biosolids-treated area had lower pH and greater acidity than the control area. Acidity was greatest during the first winter following biosolids application, decreased during the spring, and showed a similar pattern but with much smaller concentrations the second year. Maximum first- year leachate NO3 concentrations were approximately 300 mg L(-1) and half as large the second year. Estimated inorganic N leaching loss during the first 2 yr after biosolids application was 2327 kg N ha(-1). Aluminum, Mn, Cu, Ni, Pb, and Zn followed similar leaching patterns as did acidity, and their mobilization appeared to be the result of the increased acidity. These results indicate that large applications of low-C/N-ratio biosolids could negatively impact area water quality and that biosolids reclamation practices should be modified to reduce this possibility.  相似文献   

9.
When improperly managed, land application of animal manures can harm the environment; however, limited watershed-scale runoff water quality data are available to research and address this issue. The water quality impacts of conversion to poultry litter fertilization on cultivated and pasture watersheds in the Texas Blackland Prairie were evaluated in this three-year study. Edge-of-field N and P concentrations and loads in surface runoff from new litter application sites were compared with losses under inorganic fertilization. The impact on downstream nutrient loss was also examined. In the fallow year with no fertilizer application, nutrient losses averaged 3 kg N ha(-1) and 0.9 kg P ha(-1) for the cultivated watersheds and were below 0.1 kg ha(-1) for the pasture watersheds. Following litter application, PO(4)-P concentrations in runoff were positively correlated to litter application rate and Mehlich-3 soil P levels. Following litter application, NO(3)-N and NH(4)-N concentrations in runoff were typically greater from cultivated watersheds, but PO(4)-P concentrations were greater for the pasture watersheds. Total N and P loads from the pasture watersheds (0.2 kg N ha(-1) and 0.7 kg P ha(-1)) were significantly lower than from the cultivated watersheds (32 kg N ha(-1) and 5 kg P ha(-1)) partly due to lower runoff volumes from the pasture watersheds. Downstream N and P concentrations and per-area loads were much lower than from edge-of-field watersheds. Results demonstrate that a properly managed annual litter application (4.5 Mg ha(-1) or less depending on litter N and P content) with supplemental N should supply necessary nutrients without detrimental water quality impacts.  相似文献   

10.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   

11.
A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.  相似文献   

12.
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.  相似文献   

13.
In a semiarid environment, climate is a critical factor in the decomposition of surface-applied biosolids. This study examined the effect of 2- to 7-yr exposure times on the composition of single applications of New York, NY biosolids in western Texas. Exposure time effects on organic matter, N, P, S, Cu, Cr, Pb, Hg, and Zn were studied near Sierra Blanca, TX. Due to organic matter decomposition, total organic C decreased from 340 g kg(-1) in fresh biosolids to 180 g kg(-1) in biosolids after 82 mo of exposure, whereas the inorganic ash content of the biosolids increased from 339 to 600 g kg(-1). Total N decreased from 50 to 10 g N kg(-1) and total S decreased from 12 to 6 g S kg(-1). Bicarbonate-available P in the biosolids decreased from 0.9 to 0.2 g kg(-1). Successive H2O extractions yielded soluble P concentrations consistent with dicalcium phosphate (dical) for fresh biosolids and tricalcium phosphate (trical) for biosolids exposed for 59 months or more. Sparingly soluble phosphates, such as dical and trical, potentially yield > 0.5 mg P L(-1) in runoff waters for extended periods after biosolids applications, especially after multiple applications. Selective dissolution of the biosolids indicated that as much as 66 to 78% of P exists as iron phosphates, 16 to 21% as Fe oxides, and 5 to 12% as insoluble Ca phosphates. Chemical analyses of ash samples suggest that Cu and Zn have been lost from biosolids through leaching or runoff and no losses of Pb, Cr, or Hg have occurred since application.  相似文献   

14.
Agronomic use of biosolids as a fertilizer material remains controversial in part due to public concerns regarding the potential pollution of soils, crop tissue, and ground water by excess nutrients and trace elements in biosolids. This study was designed to assess the effects of long-term commercial-scale application of biosolids on soils and crop tissue sampled from 18 production farms throughout Pennsylvania. Biosolids application rates ranged from 5 to 159 Mg ha(-1) on a dry weight basis. Soil cores and crop tissue samples from corn (Zea mays L.), soybean (Glycine spp.), alfalfa (Medicago sativa L.), orchardgrass (Dactylis spp.) hay, and/or sorghum [Sorghum bicolor (L.) Moench] were collected for three years from georeferenced locations at each farm. Samples were tested for nutrients, trace elements, and other variables. Biosolids-treated fields had more post-growing season soil NO3 and Ca and less soil K than control fields and there was some evidence that soil P concentrations were higher in treated fields. The soil concentrations of Cu, Cr, Hg, Mo, Mn, Pb, and Zn were higher in biosolids-treated fields than in control fields; however, differences were < or = 0.06 of the USEPA Part 503 cumulative pollutant loading rates (CPLRs). There were no differences in the concentrations of measured nutrients or trace elements in the crop tissue grown on treated or control fields at any time during the study. Commercial-scale biosolids application resulted in soil trace element increases that were in line with expected increases based on estimated trace element loading. Excess NO3 and apparent P buildup indicates a need to reassess biosolids nutrient management practices.  相似文献   

15.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

16.
Verkhne Viiskii Reservoir (surface area = 6.0 km2; volume = 36.0 hm3), one of two water supply reservoirs for the City of Nizhnii Tagil, is located in a forested watershed (drainage area = 272 km2) in the Ural Mountain region of the Russian Federation. This study, conducted in August 1999, provides a benchmark limnological assessment against which to gauge future change. While currently meeting local water quality requirements for drinking water sources, the reservoir exhibits moderately eutrophic characteristics, including elevated epilimnetic nutrient (total P = 0.048-0.115 mg L(-1); total N = 0.421-0.508 mg L(-1)) and chlorophyll (4-8.4 microg L(-1)) concentrations, and a high rate of hypolimnetic oxygen depletion (4.07 g m(-3) mo(-1)).  相似文献   

17.
Phosphorus is an essential plant nutrient and critical to agricultural production, but it is also a problem when excessive amounts enter surface waters. Summer rotational grazing and winter feeding beef pasture systems at two fertility levels (56 and 28 kg available P ha(-1)) were studied to evaluate the P losses from these systems via surface runoff and subsurface flow using eight small (0.3-1.1 ha), instrumented watersheds and spring developments. Runoff events from a 14-yr period (1974-1988) were evaluated to determine the relationships between event size in mm, total dissolved reactive phosphorous (TDRP) concentration, and TDRP transport. Most of the TDRP transported was via surface runoff. There were strong correlations (r2 = 0.45-0.66) between TDRP transport and event size for all watersheds, but no significant (P = 0.05) correlations between TDRP concentration and event size. Flow-weighted average TDRP concentrations from the pasture watersheds for the 14-yr period ranged from 0.64 to 1.85 mg L(-1) with a few individual event concentrations as high as 85.7 mg L(-1). The highest concentrations were in events that occurred soon after P fertilizer application. Average seasonal flow-weighted TDRP concentrations for subsurface flow were < 0.05 mg L(-1). Applying P fertilizer to pastures in response to soil tests should keep TDRP concentrations in subsurface flow at environmentally acceptable levels. Management to reduce runoff and avoidance of P fertilizer application when runoff producing rainfall is anticipated in the next few days will help reduce the surface losses of P.  相似文献   

18.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

19.
In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.  相似文献   

20.
This study examined the effects of agricultural runoff on the vegetation structure of Franklin Bog, a priority conservation area located in a rapidly developing region of northwestern Vermont. Forested and agricultural runoff from the mixed land use watershed created differential vegetation patterns in the wetland, including weedy species introductions. Concentrations of nitrogen and phosphorus were measured in the stream runoff from four forested subwatersheds and two agricultural subwatersheds. Nutrient concentrations were significantly higher for agricultural vs. forested runoff for all measured parameters. Nitrate and total phosphorus concentrations in agricultural runoff ranged from 0.62 to 1.35 mg L(-1) and 0.07 to 0.37 mg L(-1), respectively. Forested runoff values were less than 0.37 mg L(-1) nitrate and 0.09 mg L(-1) total phosphorus. Significantly higher proportions of weedy species occurred at impacted vs. reference sites (46 +/- 5% vs. 23 +/- 4%). Furthermore, significantly higher total percent vegetated cover occurred at impacted vs. reference sites (116 +/- 11% vs. 77 +/- 9%) suggesting nutrient induced plant growth. Of the nine frequently occurring species categorized as bog species, only one was found within impacted sites while all nine were found at the reference sites. This suggests that the wetland's distinctive native flora is being replaced by widespread, vigorous species enhanced by agricultural nonpoint pollution in the watershed of Franklin Bog. Protection of wetlands requires attention to conservation measures throughout the entire watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号