首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
青岛沿海大气气溶胶中海盐源的贡献   总被引:16,自引:2,他引:14  
王珉  胡敏 《环境科学》2000,21(5):83-85
重点研究青岛沿海地区大气气溶胶的海盐来源 .在 Na主要来自于海盐 ,Cl存在亏损的情况下 ,为确定大气气溶胶中的海盐源贡献率 ,将 Na和 Cl作为海盐源参比元素计算得到的海盐源贡献率分别作为上限和下限 ,得出青岛沿海地区大气气溶胶中海盐源的年均质量浓度贡献率大致为 6.3%~ 9.7%.海盐源对气溶胶的贡献随气溶胶粒径增大而增加 .青岛沿海大气气溶胶氯亏损在 36.2 %~ 65.9%范围内 ,是大气中气态无机氯的来源之一 .  相似文献   

2.
马丽新  齐虹  孙霞忠 《环境科学学报》2020,40(10):3549-3558
近年来气溶胶污染被社会各界密切关注.大气气溶胶的粒径分布和污染物组成特征研究是探究大气气溶胶污染成因的基础,同时也是准确评估人体暴露于气溶胶污染导致的健康风险的关键.多级采样器可分粒径采集大气气溶胶,通过模拟人体呼吸系统进而准确量化大气气溶胶组分被吸入后在人体的沉积部位和沉积量,从而被应用至大气气溶胶粒径分布特征和人体健康风险评估的研究中.本文介绍了大气气溶胶粒径分级方法,探讨了应用多级采样器在气溶胶粒径分布研究中存在的主要问题及解决方案,并综述了大气气溶胶粒径分布特征和人体呼吸系统暴露评估的研究进展,最后结合当前的研究现状对大气气溶胶在粒径分级和人体健康风险研究领域的未来发展方向进行了展望.  相似文献   

3.
大气气溶胶在酸性降水中的作用非常重要。在“八五”期间酸性降水的研究中,进行了华北地区冬季空中大气气溶胶污染特征的分析和研究,填补了国内外相关研究领域的空白。结果表明,华北地区冬季空中大气气溶胶污染比较严重,形成了浓度与地面相近的空中污染区域,大气气溶胶主要来源于煤炭燃烧等人为过程。同时大气气溶胶具有较强的酸性,有利于酸性降水的形成。   相似文献   

4.
大气气溶胶在酸性降水中的作用非常重要.在"八五"期间酸性降水的研究中,进行了华北地区冬季空中大气气溶胶污染特征的分析和研究,填补了国内外相关研究领域的空白.结果表明,华北地区冬季空中大气气溶胶污染比较严重,形成了浓度与地面相近的空中污染区域,大气气溶胶主要来源于煤炭燃烧等人为过程.同时大气气溶胶具有较强的酸性,有利于酸性降水的形成.  相似文献   

5.
大气气溶胶在酸性降水中的作用非常重要。在“八五”期间酸性降水的研究中,进行了华北地区冬季空中大气气溶胶污染特征的分析和研究,填补了国内外相关研究领域的空白。结果表明,华北地区冬季空中大气气溶胶污染比较严重,形成了浓度与地面相近的空中污染区域,大气气溶胶主要来源于煤炭燃烧等人为过程。同时大气气溶胶具有较强的酸性,有利于酸性降水的形成  相似文献   

6.
二次有机气溶胶的形成及其毒理效应   总被引:1,自引:0,他引:1       下载免费PDF全文
有机物是大气气溶胶中非常重要的化学组分,对我国空气污染及灰霾事件发生具有显著的贡献,是当前大气化学研究的最前沿课题之一。有机气溶胶中包含大量有毒物质(如多环芳香烃、多氯联苯及有机胺类等),直接危害人体健康。目前气溶胶中有机组分的体内/体外生物毒性研究多集中于污染源直接排放的一次颗粒物,对于大气中二次有机气溶胶的形成和毒性效应的关注很少。本文以多环芳烃、有机胺及自然源萜烯类挥发性有机物为例,简要综述了大气中二次有机气溶胶的形成及其生物毒性效应,重点关注这些二次有机气溶胶的形成对母体有机组分生物毒性的增强作用,以增进对大气气溶胶污染的健康危害认识。  相似文献   

7.
中国大气气溶胶研究现状   总被引:8,自引:0,他引:8  
随着大气环境的恶化,大气污染的研究越来越受到人们的关注。大气气溶胶在全球气候的变化中起着重要的作用,且主导了区域大气灰霾污染的形成,已成为目前大气污染研究的一个焦点。大气气溶胶的研究涉及大气科学的各个领域,具有很强的综合性。当前国内大气气溶胶的气候效应、理化特征及光学属性等研究已越来越成熟,但在系统区域性研究、来源分析等方面还需要更进一步的发展。开发更先进的研究方法和开展系统的研究工作是中国大气气溶胶研究工作的主要发展趋势。  相似文献   

8.
随着雾、霾等气溶胶引起环境问题的加剧,对大气气溶胶特性的研究也越来越深入。该文重点研究了光学粒径谱仪在气溶胶粒度分布在线测量上的应用。通过对比3款典型粒径谱仪的测量原理、测量范围、测量精度等特征,选用光学粒径谱仪系列(OPS)是比较适合在线测量自然环境下大气气溶胶粒度分布的。通过一系列对大气气溶胶中典型的固体和液体气溶胶的在线测量实验,发现更换HEPA过滤器对在线测量的结果有影响,而不同采样时长和不同通道区间不会影响OPS对大气气溶胶的在线测量。  相似文献   

9.
南京北郊一次霾过程中气溶胶理化特征变化研究   总被引:2,自引:0,他引:2  
本研究利用单颗粒飞行时间气溶胶质谱仪(SPAMS)、宽范围粒径谱仪(WPS)并结合气象数据对南京北郊一次霾过程中气溶胶的理化特征变化进行了分析.结果表明观测期间风向变化导致的气溶胶来源变化是大气能见度变化的主要原因.最低大气能见度出现在西北气团控制期间,其次是偏东气团和北西北气团.不同方向上气溶胶粒子的粒径分布有显著的差异,其中来自西北气团的气溶胶粒子,有最大的表面积浓度,尤其是0.5~1μm粒径范围内的气溶胶粒子浓度最大;而北西北气团的气溶胶粒子主要集中在核模态和粗模态.不同气团中气溶胶粒子的化学组成也有显著的差异,其中K-nitrate、Ammonium、C3、Metal主要来自西北气团的贡献、其次为偏东气团贡献,K-Biomass、K-OC、EC、ECOC在3类气团中均有浓度贡献,其中K-OC、EC、ECOC、Dust在北西北气团所占比例最高.  相似文献   

10.
大气气溶胶对气候与生态系统影响的综合评述   总被引:1,自引:0,他引:1       下载免费PDF全文
在广泛收集国内外有关大气气溶胶对气候与环境生态系统影响文献的基础上,对我国大气气溶胶的排放状况、大气气溶胶对气候系统直接和间接影响研究以及大气气溶胶的气候和生态环境效应等方面做了综合评估。   相似文献   

11.
贵阳市冬季地表灰尘重金属含量动态变化及原因探析   总被引:4,自引:1,他引:3  
杨梅  李晓燕 《环境科学学报》2014,34(8):2070-2076
本研究以贵阳市冬季地表灰尘和家庭燃煤为研究对象,分析了贵阳市冬季不同时段地表灰尘重金属含量的动态变化,以及家庭燃煤取暖排放的煤灰与煤尘对环境中重金属的排放影响.结果表明:贵阳市冬季前后不同时段地表灰尘重金属含量的动态变化规律为:As含量在初冬和晚冬时段均大于初春,Cu和Pb含量表现为晚冬初春初冬,Cd、Ni、Zn在3个时段的含量变化不大;冬季地表灰尘中Cd、Cu、Zn、Pb累积较重;燃煤中元素As、Cd、Pb、Zn主要富集于煤尘中,Ni、Cu则主要富集于煤灰中.贵阳市地表灰尘在晚冬、初春时段,细粒级灰尘所占质量占比明显高于初冬,而且晚冬灰尘中粗粒级所占质量比最低,3个时段中,晚冬时段灰尘中大部分重金属含量随粒级减小而增大的特征表现得最明显.家庭燃煤排放对地表灰尘中的As、Pb含量有一定的影响.  相似文献   

12.
广州颗粒物化学组成特征及季节差异   总被引:5,自引:2,他引:3       下载免费PDF全文
为系统反映广东省广州市冬、夏季颗粒物的特征,分别于2008年12月16日─2009年1月9日和2009年8月4 ─29日,在广州市环境监测中心站使用微天平法四通道颗粒物采样仪进行颗粒物采样,并测定了PM10中ρ(OC)和ρ(EC),Al和Fe等16种化学元素以及SO42-和Ca2+等9种离子的质量浓度.结果表明:ρ(PM10),PM10中的ρ(OC)和ρ(EC),Al和Fe等16种化学元素以及SO42-和Ca2+等9种离子的质量深度季节差异明显,均表现为冬季高于夏季;冬、夏季PM10中各成分所占比例排序不同,但均以OC所占比例最大,SO42-和Ca2+等9种离子次之.广州PM10主要有5个来源,但冬、夏季不同.其中冬季主要来源于工业源和土壤扬尘、燃煤、交通排放和生物质燃烧、海盐;夏季则主要来源于燃油、交通排放和生物质燃烧、土壤扬尘或燃煤、海盐、垃圾焚烧或特殊工业源.   相似文献   

13.
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.   相似文献   

14.
鞍山市大气PM10中多环芳烃(PAHs)的污染特征及其来源   总被引:5,自引:3,他引:2  
2005年3月和8月在辽宁省鞍山市8个采样点采集PM10样品,用液相色谱-质谱法分析了PM10上负载的11种多环芳烃(PAHs),并探讨了其分布特征和来源.结果表明:鞍山市PM10中ρ(PAHs)时空变化特征显著,冬季高于夏季,且工业区PAHs污染最严重;在PAHs中4环以上的组分占主导,冬季ρ(4环PAHs)较高,而在夏季ρ(5~6环PAHs)较高.运用比值法和主成分分析法对PAHs来源进行分析,发现冬季的主要污染源为燃煤排放、机动车尾气排放和炼钢工业排放;夏季主要污染源为燃煤排放、机动车尾气排放、生物质燃烧排放和炼钢工业排放等,来源较冬季复杂.机动车尾气排放对PAHs的贡献在2个季节都较为明显,冬季燃煤排放的贡献比重明显增加.   相似文献   

15.
北京部分地区大气PM10中多环芳烃的季节性变化   总被引:10,自引:0,他引:10       下载免费PDF全文
采集了北京城乡结合部和郊区 2003 年 4 个季节大气 PM10样品,用超声萃取-GC/MS 技术分析了其多环芳烃的组成.结果表明,17 种母核多环芳烃总量在8.46~296.57ng/m3之间,城乡结合部的浓度是郊区的1.02~1.58倍.PAHs总量的季节性变化与采样时环境温度显示出较好的负相关性,即冬季>秋季>春季>夏季.郊区和城乡结合部冬季 PAHs 总量分别是夏季的 22.25 倍和 34.41 倍,显示了燃煤取暖对北京冬季大气 PAHs 污染的贡献极为显著.运用多种多环芳烃比值综合判断,北京大气 PM10中 PAHs 主要以燃煤和机动车尾气混合来源为主,石油源和木材燃烧源的贡献较小.  相似文献   

16.
2016年冬季,宜昌城区空气质量比上年冬季明显改善,通过采用对比分析、相关分析及后向轨迹分析等方法,诊断可能的原因.结果表明,宜昌城区冬季空气污染主要是由于细颗粒物导致,2016年冬季PM2.5、PM10、SO2浓度较2015年冬季明显降低,主要原因包括含硫燃料燃烧明显减少、外源性污染物的输入明显减少、降水清除以及减排措施有力等.后向轨迹分析结果显示,两年冬季污染最严重时段的污染物路径来源不同,2015年冬季最严重的污染过程主要是由于上游北方远距离的外源性污染的快速输入、在本地下沉导致,2016年冬季最严重的污染过程则是由于来自偏南路径近距离的气团叠加本地污染源,在垂直方向累积造成.  相似文献   

17.
陶杰  闫慧姣  徐艺斐  荆海涛 《环境科学》2024,45(5):2548-2557
于2021年1月和4月利用在线金属分析仪对郑州市大气PM2.5中的18种金属元素进行连续测定,分析了元素浓度变化特征;采用富集因子、正定矩阵因子分解法(PMF)和特征雷达图对金属元素进行溯源;采用美国EPA健康风险评价模型评估其健康风险,并通过后向轨迹法和浓度权重轨迹法(CWT)分析了健康风险的潜在源区.结果表明,春季元素浓度较高,Fe、Ca、Si和Al浓度之和分别占冬季和春季总元素浓度的89.8%和87.5%. Cd属于重度富集,受人为污染影响严重.冬季Pb、Se、Zn、Ni、Sb和K以及春季Cr、Ni、Fe、Mn、V、Ba、Ca、K、Si和Al浓度随污染等级的提高而增加. PMF源解析和特征雷达图结果表明,冬春两季金属元素主要来源为工业源、地壳源、机动车源和混合燃烧源,冬季多发生工业源和混合燃烧源污染,春季多发生地壳源污染.冬春两季均存在明显的非致癌风险,冬季健康风险更严重,Mn造成明显的非致癌风险.冬季健康风险主要受郑州及周边城市传输影响和西北方向远距离输送影响,春季健康风险主要受郑州及周边城市影响.  相似文献   

18.
于2018年冬季(1月)和夏季(7月)在中国南方江西于都某偏远乡村采集PM2.5样品,分析PM2.5中BC浓度及其稳定碳同位素(δ13CBC),水溶性离子浓度.结果表明,采样期间BC在冬季和夏季平均浓度分别为(1.3±0.8),(0.8±0.3)μg/m313CBC在冬季和夏季平均值分别为(-25.8±1.6)‰和(-26.3±0.7)‰,两者整体呈现冬季高夏季低趋势,可能受到不同来源影响.相关性分析和贝叶斯模型源解析结果表明:冬季受生物质燃烧贡献最大为44.3%,其次机动车尾气和煤燃烧,分别为29.3%和26.4%;夏季受机动车尾气贡献最大为58.5%,其次生物质燃烧和煤燃烧,分别为28.8%和12.7%.后向轨迹表明,中国南方乡村的BC可能受到城市污染区域的长距离输送影响.  相似文献   

19.
成都市PM10中多环芳烃来源识别及毒性评估   总被引:1,自引:0,他引:1  
对成都市2009年冬夏两季可吸入颗粒物(PM10)中16种多环芳烃(PAHs)含量进行了研究,并进一步分析其空间分布、组成特征及来源.结果表明,16种PAHs中15种被普遍检出(Nap未检出),冬季和夏季的ΣPAHs浓度范围分别为40.25~150.68ng/m3和44.51~71.16ng/m3,平均浓度分别为88.36ng/m3和64.21ng/m3.空间分析表明,PAHs浓度在工业区较高,背景点较低.从PAHs组分分析结果显示,低环含量较低,4~6环所占比例较大,其比例范围为86.7%~96.1%.各组分含量季节差异不明显.利用特征化合物比值法、等级聚类法、PCA解析法分析了污染源类型,结果表明成都市PM10中PAHs的主要来源是机动车尾气排放源,以及煤与木材燃烧源.通过BaP当量(BaPE)进行了毒性评估,结果显示成都市冬夏两季的BaPE均值分别为13.41ng/m3和9.54ng/m3.  相似文献   

20.
Size distributions of 29 elements in aerosols collected at urban, rural and curbside sites in Beijing were studied. High levels of Mn, Ni, As, Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing. Principal component analysis (PCA) indicates 4 sources of combustion emission, crust related sources, traffic related sources and volatile species from coal combustion. The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs). Group 1 elements are crust related and mainly found within coarse mode including Al, Mg, Ca, Sc, Ti, Fe, Sr, Zr and Ba; Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S, As, Se, Ag, Cd, Tl and Pb; Group 3 elements are multi-source related and show multi-mode distribution including Be, Na, K, Cr, Mn, Co, Ni, Cu, Zn, Ga, Mo, Sn and Sb. The EFs of Be, S, Cr, Co, Ni, Cu, Ga, Se, Mo, Ag, Cd, Sb, Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter. The abundance of Cu and Sb in coarse mode is about 2-6 times higher at curbside site than at urban site indicating their traffic sources. Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline, as the EFs of Pb are comparable at both urban and curbside sites, and about two times higher in winter than that in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号