首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
当今世界电子、电器工业快速发展,层出不穷的技术创新与持续膨胀的市场需求加速了电子与电器设备的更新换代,产生了大量的电子与电器废弃物(WEEE)。鉴于WEEE所带来的严重的环境问题及其所含有的金属、贵金属、塑料及玻璃等高利用价值的材料,对WEEE进行资源化再循环处理已成为人们关注的热点。WEEE组成材料在密度、铁磁性、导电性等物理性质方面的较大差异使采用环境友好的机械物理方法对其进行资源化再循环处理成为可能。就WEEE拆解及其所含物质机械物理分离研究进展进行了综述。  相似文献   

2.
随着电器电子产品的快速消费和流转,我国正面临电子废弃物国内产生量和国外非法进口量迅速增长的现实问题。废弃电器电子产品处理基金政策(简称"基金"政策)推动了我国电子废弃物资源化产业的发展,带来显著的环境效益。通过解析电子废弃物生命周期过程及其关键的碳减排和碳排放环节,提出了电子废弃物资源化全生命周期碳减排效益评估方法,并以废弃电冰箱为例开展了案例研究。结果表明,制冷剂回收所致碳减排量占废弃电冰箱资源化过程全部碳减排量的92.5%;相对于制冷剂的回收,再生材料产出带来的碳减排效益并不显著;拆解处理所消耗电力的生产是资源化过程碳排放的主要来源,所占比例达89.7%;综合来看,单台废弃电冰箱资源化全生命周期的碳减排效益为1 573.17 kg CO2-eq,2013年我国废弃电冰箱在正规处理体系内资源化带来的碳减排总效益为94.86×104t CO2-eq,"基金"政策驱动效应已初步显现。  相似文献   

3.
随着电子产品消费量的日益增多,电子废弃物(WEEE)的数量也不断增加,WEEE管理已成为全球关注的热点环境问题。以Web of Science核心数据库和中国知网(CNKI)全文数据库相关文献作为样本,借助Citespace软件对2007—2017年国内外WEEE管理文献进行了可视化分析,旨在理清中国与国际WEEE管理的发展脉络、研究热点和前沿趋势。结果表明:(1)国际关于WEEE管理的热度不断增加,研究重点由发达国家逐渐转向发展中国家和地区;(2)WEEE管理的研究方法、研究内容和研究角度日益丰富,生产者责任延伸制度、绿色设计、生命周期评价、逆向物流和工业生态学都成为研究的热点;(3)未来中国WEEE管理研究应注重WEEE管理的立法建设和理论技术创新以及大数据与信息系统在WEEE管理方面的应用。  相似文献   

4.
《环境污染与防治》2005,27(6):459-459
FXS废旧电子线路板回收处理设备是浙江丰利粉碎设备有限公司研发的我国首条年处理万吨级废旧线路板成套设备,专家认为该设备采用了先进的物理法回收工艺;所研制的强力破碎机、中碎机、精细粉碎机、超微分级机和高压静电分离等设备创新性强,其资源化的处理工艺路线先进合理。  相似文献   

5.
废弃电子设备的资源化研究发展现状   总被引:12,自引:1,他引:12  
分析了废弃电子设备的主要特点、资源化回收与利用的不同方法及其优缺点,并详细介绍了废弃电子设备机械处理的研究及工业应用现状。  相似文献   

6.
废液晶显示屏的环境风险与资源化策略   总被引:3,自引:1,他引:2  
随着液晶显示屏(LCD)的快速普及,废弃LCD所引发的环境问题引起人们的广泛关注,采用科学有效的方法对其进行资源化已成为国内外学者的研究热点.分析了对中国废LCD的产生趋势,介绍了LCD的结构与材料组成并阐述了其潜在的环境风险,总结了当前国内外废LCD的资源化技术,并指出目前该研究领域中存在的问题及后续的研究重点.  相似文献   

7.
我国电子废弃物管理与资源化对策   总被引:6,自引:0,他引:6  
电子废弃物对人类环境的影响,已成为全球化的问题.通过对发达国家关于电子废弃物管理以及资源化技术的进展回顾,针对我国目前的情况提出相应的对策:制定延伸生产者责任以及有害物质的停用限期的相应法规;建立电子废弃物回收网络体系;通过国家政策和经济的扶持,尽快建立专门处理电子废弃物的机构;加快我国电子废弃物处理技术的步伐,尽快提高现有工艺及设备.  相似文献   

8.
电子废弃物对人类环境的影响,已成为全球化的问题。通过对发达国家关于电子废弃物管理以及资源化技术的进展回顾,针对我国目前的情况提出相应的对策:制定延伸生产者责任以及有害物质的停用限期的相应法规;建立电子废弃物回收网络体系;通过国家政策和经济的扶持,尽快建立专门处理电子废弃物的机构;加快我国电子废弃物处理技术的步伐,尽快提高现有工艺及设备。  相似文献   

9.
世界废弃印刷电路板的机械处理技术现状   总被引:54,自引:1,他引:53  
电子废话弃物中废印刷电路板的处理,一直是相当复杂的问题。根据废电路板中各种组分的结合方式,采用机械方法进行材料的分离,是经济适用并与环境相协调的处理手段。本文介绍了废 电路板再利用技术采用的各种机械设备,并总结了国外机械处置方法的实践进展。  相似文献   

10.
绿色建筑小区雨水资源化综合利用技术   总被引:3,自引:0,他引:3  
运用生态学原理设计绿色建筑小区已逐渐成为潮流,节水与水资源利用的问题正日益受到关注.绿色建筑小区雨水资源化综合利用技术集成优化了小区雨水收集与分散处理系统、雨水集中收集与处理系统、雨水渗透系统等技术,具有投资省、处理效果好、管理方便等优点,适合为今后的绿色建筑小区雨水资源化综合利用建设参考.  相似文献   

11.
There is an increasing interest in the end-of-life management of polymers present in waste electrical and electronic equipment (WEEE). This is mainly due to high recycling and recovery quotas set by the European WEEE directive, which can only be fulfilled by including the plastic fraction in recycling and recovery approaches. Previous studies identified a high material diversity and various contaminants in WEEE plastics, including heavy metals, polybrominated biphenyls (PBB), diphenyl ethers (PBDE), as well as polybrominated dibenzodioxins and dibenzofurans (PBDD/F). These substances are regulated by European directives that limit their levels in marketable products. Consequently, both material diversity and contaminants are strong arguments against material recycling and point to hazardous waste treatment. However, recent developments in the production of flame retardants and electrical and electronic goods aimed to reduce contaminants and material diversity. Thus, the present study summarises updated contaminant levels of plastic fractions of European WEEE, as well as data on materials in waste housing polymers. Material characterisation revealed housing fractions to be interesting sources for polymer recycling, which however has to implement potent material separation and/or bromine elimination techniques. With respect to contaminants, our data indicate an effective phase-out of PBB, but still high levels of PBDE and PBDD/F are found. Sources and implications for the material recycling and thermal recovery approaches are discussed in detail.  相似文献   

12.
Issues surrounding the impact and management of discarded or waste electronic and electrical equipment (WEEE) have received increasing attention in recent years. This attention stems from the growing quantity and diversity of electronic and electrical equipment (EEE) used by modern society, the increasingly rapid turnover of EEE with the accompanying burden on the waste stream, and the occurrence of toxic chemicals in many EEE components that can pose a risk to human and environmental health if improperly managed. In addition, public awareness of the WEEE or "e-waste" dilemma has grown in light of popular press features on events such as the transition to digital television and the exportation of WEEE from the United States and other developed countries to Africa, China, and India, where WEEE has often not been managed in a safe manner (e.g., processed with proper safety precautions, disposed of in a sanitary landfill, combusted with proper air quality procedures). This paper critically reviews current published information on the subject of WEEE. The definition, magnitude, and characteristics of this waste stream are summarized, including a detailed review of the chemicals of concern associated with different components and how this has changed and continues to evolve over time. Current and evolving management practices are described (e.g., reuse, recycling, incineration, landfilling). This review discusses the role of regulation and policies developed by governments, institutions, and product manufacturers and how these initiatives are shaping current and future management practices.  相似文献   

13.
ABSTRACT

African countries are among the prime destinations of electronic waste (e-waste) also called Waste of Electrical and Electronic Equipment (WEEE), and have been challenged with the management of its environmental and health impacts. This paper was carried out to understand the e-waste sector and policy responses in selected African countries. Data for the study were generated from sources; such as policy documents, legislations and literature. Findings show that the import of WEEE is on rising in Africa while landfill and incineration continued to be widely used handling approaches. Countries studied lack WEEE specific national policies and stringent policy instruments to enforce proper collection and recycling systems. Despite the start-ups in emerging recycling operations, a major gap is that informal e-waste actors dominate the e-waste chain from collection to material extraction and refurbish activities through rudimentary tools that cannot detect toxic elements. Tackling the problem demands integrated multi-actor interventions with multiple stakeholders to reduce WEEE inflow on one hand, and ramping up safe recycling capacity on the other hand.  相似文献   

14.
选矿技术作为一种成熟的矿物分离技术已广泛应用于城市固体废弃物资源化领域 ,促进了环境的保护和资源的综合回收 ;同时也开辟了选矿技术新的应用领域。结合实例介绍国内外常用的各种城市固体废弃物的分选工艺 ,指出选矿技术的运用对固体废弃物的资源化有着重要的实际意义  相似文献   

15.
Zhong Y  Peng P  Huang W 《Chemosphere》2012,87(10):1141-1148
Solvent-based separation method is presumably an efficient and environmentally beneficial approach for elimination of brominated flame retardants (BFRs) from waste electrical and electronic equipment (WEEE). The overall goal of this study was to evaluate possible effects of organic solvent on the behavior of BFRs during solvent-based processing of WEEE. We initiated a set of batch experiments for examining the rates and possible pathways of transformation of a representative BFR (tetrabromobisphenol A, TBBPA) using acetone, toluene, and methanol as the solvents. Our results showed that toluene and methanol had no effect on the transformation of TBBPA, but approximately 20% of TBBPA (100 mg L−1) was transformed by acetone within 2 h at 50 °C. Analysis of the products with GC-MS showed that two high-molecular-weight products (MW = 586) were major products of the transformation reactions. The role of acetone as a reactant in the transformation of TBBPA was further validated with dueterated acetone. In addition, the effects of co-existing metals in WEEE (i.e., Zn, Cu, and Ni) on the transformation of TBBPA in the solvent systems were investigated. These metals tested were found to greatly enhance the rates of TBBPA transformation. The metal facilitated solvent reactions with TBBPA may lower the extractability of TBBPA by formation of larger and less soluble products, hence potentially increasing the cost for separating the chemical from WEEE.  相似文献   

16.
This paper reviews the concentrations of persistent organic pollutants such as flame retardants (PBDEs), dioxins/furans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals/metalloid concentrations of different environmental media at Guiyu, a traditional rice-growing village located in southeastern Guangdong Province (PR China), which has turned into an intensive electronic-waste (e-waste) recycling site. Incomplete combustion of e-waste in open air and dumping of processed materials are the major sources of various toxic chemicals. By comparing with existing data available in other areas and also guidelines adopted in different countries, it is obvious that the environment is highly contaminated by these toxic chemicals derived from the recycling processes. For example, the monthly concentration of the sum of 22 PBDE congeners contained in PM(2.5) (16.8ngm(-3)) of air samples at Guiyu was 100 times higher than published data. In order to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways of different toxic chemicals which may affect the workers and local residents especially mothers, infants and children.  相似文献   

17.
基于废弃电器电子产品产生量大、价值高、危害性强等特点,阐述了对它们进行回收处理的必然性。文中在调研上海市废弃电器电子产品回收量、预测其产生量的基础上,阐明了在家电以旧换新的政策下上海市废弃电器电子产品具有很高回收率以及废弃电视机的所占比例极高的特点,并分析了产生这种现象的原因。  相似文献   

18.
Various hazardous substances contained in waste TV sets might be released into environment via dust during recycling activities. Two brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), and five kinds of heavy metals (Cu, Pb, Cd, Cr, and Ni) were detected in indoor dust collected from two workshops (TV dismantling workshop and subsequent recycling workshop). PBDEs concentrations in dust from waste wires recycling line (722,000 ng/g) were the highest among the studied sites, followed by those in manual dismantling–sorting line (117,000 ng/g), whereas TBBPA concentrations were the highest in manual dismantling–sorting line (557 ng/g) and printed circuit board (PCB) recycling line (428 ng/g). For heavy metals, Cu and Pb were the most enriched metals in all dust samples. The highest concentration of Pb (22,900 mg/kg) was found in TV dismantling workshop-floor dust. Meanwhile, Cu was the predominant metal in dust from the PCB recycling line, especially in dust collected from electrostatic separation area (42,700 mg/kg). Occupational exposure assessment results showed that workers were the most exposed to BDE-209 among the four PBDE congeners (BDE-47, BDE-99, BDE-153, and BDE-209) in both workshops. The hazard quotient (HQ) indicated that noncancerous effects were unlikely for both BFRs and heavy metals (HQ?<?1), and carcinogenic risks for Cd, Cr, and Ni (risk?<?10?6) on workers in two workshops were relatively low.  相似文献   

19.
Valuable metal materials can be recovered from spent nickel–metal hydride (NiMH) batteries. However, little attention has been paid to the metal compositions of individual components of NiMH batteries, although this is important for the selection of the appropriate recycling process. In this study, NiMH batteries were manually disassembled to identify the components and to characterize the metals in each of these. A preliminary economic analysis was also conducted to evaluate the recovery of valuable metals from spent NiMH batteries using thermal melting versus simple mechanical separation. The results of this study show that metallic components account for more than 60% of battery weight. The contents of Ni, Fe, Co, and rare earth elements (REEs) (i.e., valuable metals of interest for recovery) in a single battery were 17.9%, 15.4%, 4.41%, and 17.3%, respectively. Most of the Fe was in the battery components of the steel cathode collector, cathode cap, and anode metal grid, while Ni (>90%) and Co (>90%) were mainly in the electrode active materials (anode and cathode metal powders). About 1.88 g of REEs (Ce, La, and Y) could be obtained from one spent NiMH battery. The estimated profits from recovering valuable metals from spent NiMH batteries by using thermal melting and mechanical processes are 2,329 and 2,531 USD/ton, respectively, when including a subsidy of 1,710 USD/ton. The findings of this study are very useful for further research related to technical and economic evaluations of the recovery of valuable metals from spent NiMH batteries. Implications: The spent nickel–metal hydride (NiMH) batteries were manually disassembled and their components were identified. The metals account for more than 60% of battery weight, when Ni, Fe, Co, and rare earth elements (REEs) were 17.9%, 15.4%, 4.41%, and 17.3%, respectively, in a single battery. The estimated profits of recovering valuable metals from NiMH batteries by using thermal melting and mechanical processing are 2,329 and 2,531 USD/ton, respectively, when including a subsidy of 1,710 USD/ton. These findings are very useful to develop or select the recovery methods of valuable metals from spent NiMH batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号