首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In mixed industrial effluent the presence of metal ions can retard the destruction of organic contaminants and the efficiency of recovery of the metal is reduced by the presence of the organic species. Results are presented for copper-2,4-dichlorophenoxyacetic acid (2,4-D) system in which both effects occur. An electrochemical cell alone can be used to recover copper in the pH range 1.5-4.5 but it is not capable of achieving complete disappearance of 2,4-D by anodic oxidation. A photolytic cell alone can achieve the destruction of 2,4-D at pH 3.5 but leaves copper in solution. A combined photolytic-electrochemical system using an activated carbon concentrator cathode achieves the rapid simultaneous destruction of 2,4-D and recovery of copper. Results are presented for the recovery of more than 90% copper from, and >99.9%, destruction of the organochlorine compound 2,4-D in, a solution containing 100 mg dm(-3) copper and 50 mg dm(-3) 2.4-D. The photolytic degradation of 2,4-D depends on the intensity of the UV-probe. Only 19% degradation is achieved after 8 h with the 150 W UV-probe but the corresponding value with the 400 W UV-probe is 100%. In the case of 150 W UV-probe the degradation of 2,4-D proceeds through the formation of 2,4-dichlorophenol and phenol. The concentration of these intermediates are very low in the case of 400 W UV-probe because the speed of the degradation of 2,4-D is very fast. The addition of TiO2 (1 g dm(-3)), as a semiconductor material, and H202 (1.5 g dm(-3)) as an oxidant, increases the photolytic degradation of 2,4-D.  相似文献   

2.
Chaudhary AJ  Grimes SM 《Chemosphere》2008,72(11):1636-1642
The effects of the presence of copper on the photooxidation of phenol and 4-chlorophenol and of the presence of the phenols on the recovery of copper by electrodeposition are studied in three systems: a photolytic cell in the presence and absence of TiO2 as a catalyst or H2O2 as an oxidant; an electrolytic cell and a combined photolytic-electrolytic system. The optimum system for the simultaneous removal of copper and destruction of the phenols which overcomes the effects of copper-phenol reactions is a combined system with concentrator electrode technology incorporated into the electrolytic cell. This combined system achieves >99% removal of copper and destruction of phenol or 4-chlorophenol in an 8 h period.  相似文献   

3.
Synthetic crystalline hydrous ferric oxide (CHFO) (particle size 0.14 to 0.29 mm) has been used systematically for adsorptive chromium(VI) removal from contaminated water. Batch experiments were performed as a function of pH, contact time, solute concentration, and regeneration of adsorbents. Column experiments were performed for breakthrough points in the presence and absence of other ions and treatment of industrial effluent. The optimum pH range was 2.0 to 4.0. The adsorption kinetic data could be described well by both second-order and pseudo-first-order models. The isotherm adsorption data at 30 +/- 2 degrees C obeyed the Langmuir model best. The monolayer adsorption capacity was 35.7 mg/g. Chromium(VI)-rich CHFO could be regenerated up to 89 +/- 1% with 2.0 M sodium hydroxide. Regenerated column reuse showed a decrease (10 to 12%) in breakthrough capacity. Finally, the CHFO- (dried at 300 degrees C) packed column was used for the recovery (98.5 +/- 1.0%) of chromium(VI) from contaminated industrial waste effluent of Hindustan Motor Limited (Hooghly, West Bengal, India).  相似文献   

4.
Sixty-four surface soil samples taken in the vicinity of Al Ain landfill were analysed for cadmium, chromium, copper, nickel, lead and zinc by inductively coupled plasma spectroscopy. Extraction techniques were used to establish the association of the total concentrations of the six metals in the soil samples with their contents in the exchangeable, carbonate, iron/manganese oxides, and residual fractions. In the investigated soils, the recorded concentrations were as follows: 0.043 mg kg-1 for cadmium, 19.1 mg kg-1 for chromium, 53.3 mg kg-1 for copper, 60 mg kg-1 for nickel, 13.7 mg kg-1 for lead, and 117 mg kg-1 for zinc. Cadmium, chromium, nickel, lead and zinc concentrations in the investigated soil samples reflect the natural background values in shale, whereas copper is slightly enriched. I-geo (geoaccumulation index) values of the metals in the soils under study indicate that they are uncontaminated with cadmium, chromium, nickel, lead and zinc, but contaminated to moderately contaminated with copper. Heavy metal contents in the sediments were found to be significantly influenced by different physico-chemical parameters. The effect of these parameters can be arranged in the following order: clay fraction > carbonate fraction > silt fraction > organic matter fractions. A sequential extraction procedure showed that the total concentrations of the heavy metals are largely bound to the residual phase (retained 71.4% of cadmium, 77.8% of chromium, 75% of copper, 47% of nickel, 62.8% of lead, and 75.8% of zinc). A likely sequence of mobility in the investigated soils is as follows: chromium > lead > nickel > cadmium > zinc > copper.  相似文献   

5.
The use of a honeycomb zeolite concentrator and an oxidation process is one of the most popular methods demonstrated to control volatile organic compound (VOCs) emissions from waste gases in semiconductor manufacturing plants. This study attempts to characterize the performance of a concentrator in terms of the removal efficiencies of semiconductor VOCs (isopropyl alcohol [IPA], acetone, propylene glycol methyl ether [PGME], and propylene glycol monomethyl ether acetate [PGMEA]) under several parameters that govern the actual operations. Experimental results indicated that at inlet temperatures of under 40 degrees C and a relative humidity of under 80%, the removal efficiency of a zeolite concentrator can be maintained well over 90%. The optimal rotation speed of the concentrator is between 3 and 4.5 rph in this study. The optimal rotation speed increases with the VOCs inlet concentration. Furthermore, reducing the concentration ratio helps to increase the removal efficiency, but it also increases the incineration cost. With reference to competitive adsorption, PGMEA and PGME are more easily adsorbed on a zeolite concentrator than are IPA and acetone because of their high boiling points and molecular weights.  相似文献   

6.
Experiments were carried out to investigate the ability of water hyacinth (Eichhornia crassipes) to remove five heavy metals (cadmium, chromium, copper, nickel, and lead) commonly found in leachate. All experiments were conducted in batch reactors in a greenhouse. It was found that living biomass of water hyacinth was a good accumulator for copper, chromium, and cadmium. The plants accumulated copper, chromium, and cadmium up to 0.96, 0.83, and 0.50%, respectively, of their dry root mass. However, lead and nickel were poorly accumulated in water hyacinth. Also, nonliving biomass of water hyacinth dry roots showed ability to accumulate all metals, except Cr(VI), which was added in anionic form. The highest total metal sorption by nonliving dry water hyacinth roots was found to take place at pH 6.4. The current research demonstrates the potential of using water hyacinth for the treatment of landfill leachate containing heavy metals.  相似文献   

7.
The aim of this research was to expose individual removals of copper, chromium, nickel, and lead from aqueous solutions via biosorption using nonliving algae species, Chara sp. and Cladophora sp. Optimum pH values for biosorption of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions were determined to be 6, 7, 7, and 3 for Cladophora sp. and 5, 3, 5, and 4 for Chara sp. respectively. Maximum adsorption capacities of Chara sp. [10.54 for chromium (III) and 61.72 for lead (II)] and Cladophora sp. [6.59 for chromium (III) and 16.75 and 23.25 for lead (II)] for chromium (III) and lead (II) are similar. On the other hand, copper (II) and nickel (II) biosorption capacity of Cladophora sp. [14.28 for copper (II) and 16.75 for nickel (II)] is greater than Chara sp. [6.506 for copper (II) and 11.76 for nickel (II)]. Significantly high correlation coefficients indicated for the Langmuir adsorption isotherm models can be used to describe the equilibrium behavior of copper, chromium, nickel, and lead adsorption onto Cladophora sp. and Chara sp.  相似文献   

8.
Yap CY  Mohamed N 《Chemosphere》2007,67(8):1502-1510
Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.  相似文献   

9.
Chiu ST  Lam FS  Tze WL  Chau CW  Ye DY 《Chemosphere》2000,41(1-2):101-108
In 1997, concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and nickel (Ni) were analysed in green-lipped mussels (Perna viridis) from three mariculture zones located in the north-east (Kat O), south (Lo Tik Wan) and to the west (Ma Wan) of Hong Kong. Spatial differences in the concentration of metals were found, chromium and copper were higher at Ma Wan and Lo Tik Wan compared to Kat O in the north-east. In contrast, the highest levels of lead (mean = 4.37 microg/g dry wt) were recorded at Kat O. There were no differences in the level of nickel between the study sites. A comparison of the metal concentrations in mussels with the results of a previous study seven years before, in 1990, showed a twofold increase in the mean levels of cadmium for all three sites. However, levels of the other metals in 1997 were lower by 12-32% for chromium, 32-39% for copper and 24-25% for nickel. The greatest reductions were recorded for lead: Kat O (39%), Ma Wan (51%) and Lo Tik Wan (75%). This may be related to the introduction of lead-free petrol in 1991. Despite the apparent reduction in some heavy metal bioaccumulation between 1990 and 1997, from a public health risk perspective, the data suggest a continued need for monitoring of heavy metals in mussels from mariculture zones.  相似文献   

10.
Abstract

The use of a honeycomb zeolite concentrator and an oxidation process is one of the most popular methods demonstrated to control volatile organic compound (VOCs) emissions from waste gases in semiconductor manufacturing plants. This study attempts to characterize the performance of a concentrator in terms of the removal efficiencies of semiconductor VOCs (isopropyl alcohol [IPA], acetone, propylene glycol methyl ether [PGME], and propylene glycol monomethyl ether acetate [PGMEA]) under several parameters that govern the actual operations. Experimental results indicated that at inlet temperatures of under 40 °C and a relative humidity of under 80%, the removal efficiency of a zeolite concentrator can be maintained well over 90%. The optimal rotation speed of the concentrator is between 3 and 4.5 rph in this study. The optimal rotation speed increases with the VOCs inlet concentration. Furthermore, reducing the concentration ratio helps to increase the removal efficiency, but it also increases the incineration cost. With reference to competitive adsorption, PGMEA and PGME are more easily adsorbed on a zeolite concentrator than are IPA and acetone because of their high boiling points and molecular weights.  相似文献   

11.
采用极化曲线法研究了酸性蚀刻液阴、阳极电化学行为,并构建了离子膜电解反应体系,考察了在线再生酸性蚀刻液及回收铜的效果。结果表明,阳极氧化过程发生浓差极化,存在极限电流密度,Cu+含量越高,极限电流密度越大;阴极还原分4步反应进行,存在极限电流密度;强化溶液传质可有效提高阴、阳极极限电流密度,有利于避免电解过程中析出氯气和氢气;在线实验表明,通过监控阳极液ORP,可避免析出氯气;分步降低电流电解有利于避免析出氢气,形成致密的金属铜块;在电流为9~24A范围内分4步电解23.5h可再生酸性蚀刻液23.5L,同时电沉积回收510g铜,纯度高达99.98%。阴极电流效率达到95.2%,吨铜电耗3251kWh。电解过程中无氯气和氢气析出,无废液排放,表明膜电解法在线再生酸性蚀刻液具有良好的应用前景。  相似文献   

12.

Purpose

Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent.

Methods

Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy.

Results

The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay.

Conclusion

Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.  相似文献   

13.
Sun JM  Zhao XH  Huang JC 《Chemosphere》2005,58(8):1003-1010
Mechanisms of hexavalent chromium co-removal with copper precipitation by dosing Na2CO3 were studied with a series of well-designed batch tests using solutions containing 150 mg l-1 Cu(II) and 60 mg l-1 Cr(VI). It was found that direct precipitation of chromium through formation of copper-chromium bearing precipitates (in the form of CuCrO4) was one of the main mechanisms contributing to chromium co-removal at pH close to 5.0, and adsorption of chromium at a higher pH by freshly formed copper-carbonate precipitates (adsorbent) contributed to further chromium co-removal. Since, according to solubility products, neither copper-carbonate nor copper-hydroxide precipitates can be produced at pH around 5.0 for a pure 150 mg l-1 copper precipitation, characterization of copper-carbonate precipitates (adsorbent) was carried out through developing pC-pH curves of the systems by both equilibrium calculations and MINEQL+ 4.5 (a chemical equilibrium modeling software), and also through laboratory determination of the precipitate composition, such as gravimetric analyses, inorganic carbon percentage and EDAX spectrum analyses. CuCO3.Cu(OH)2, or a combination of CuCO3.Cu(OH)2 (in majority) and Cu(OH)2 (in minority) were suggested to be the major constituent of the precipitates obtained from the copper solution with Na2CO3 dosing.  相似文献   

14.
The goal of this study was to determine the removal efficiencies of chromium, copper, lead, nickel, and zinc from raw wastewater by chemically enhanced primary treatment (CEPT) and to attain a total suspended solids removal goal of 80%. Operating parameters and chemical doses were optimized by bench-scale tests. Locally obtained raw wastewater samples were spiked with heavy metal solutions to obtain representative concentrations of metals in wastewater. Jar tests were conducted to compare the metals removal efficiencies of the chemical treatment options using ferric chloride, alum, and anionic polymer. The results obtained were compared with those from other studies. It was concluded that CEPT using ferric chloride and anionic polymer is more effective than CEPT using alum for metals removal. The CEPT dosing of 40 mg/L ferric chloride and 0.5 mg/L polymer enhanced heavy metals removal efficiencies by over 200% for chromium, copper, zinc, and nickel and 475% for lead, compared with traditional primary treatment. Efficient metals capture during CEPT can result in increased allowable headworks loadings or lower metal levels in the outfall.  相似文献   

15.
The purpose of this study was to investigate the effects of sintering atmosphere (oxidizing and reducing) on the polymorphs of dicalcium silicates (Ca2SiO4, C2S) and on the chromium leaching of the belite-rich clinkers made from a chromium-bearing sludge. This sludge was generated in an electroplating factory, and in addition to chromium, it contained nickel, copper and zinc. In the clinker production, air was used as the oxidizing atmosphere, and carbon monoxide, which was produced by burning graphite with an insufficient amount of oxygen, was employed as the reducing atmosphere. Dicalcium silicates were substantially formed under both kinds of sintering atmosphere, but there was some nonhydraulic gamma-C2S in the clinkers produced under the oxidizing atmosphere. In addition, the amount of gamma-C2S decreased with the chromium-bearing sludge addition, whereas that of beta-C2S increased. The clinkers produced under the reducing atmosphere had less residual chromium, a finding that shows that more chromium was evaporated. However, the reducing atmosphere can decrease the proportion of hexavalent chromium (Cr(VI)) in the resulting clinkers. For other heavy metals, the residual amounts of nickel and copper generally increased with the sludge addition, but zinc was absent in most of the clinkers produced under the reducing atmosphere. This implies that the evaporation of zinc is much more significant than that of the other heavy metals under a reducing atmosphere. In the leaching tests, the concentrations of nickel, copper, and zinc were below the detection limits in all the leachates. In terms of chromium, the total leaching concentration was highly related to Cr(VI). The clinkers produced under the oxidizing atmosphere had high leaching concentrations of chromium, and thus failed to meet the regulatory limit. In contrast, the reducing atmosphere was effective in decreasing the chromium leaching, and it therefore makes the resulting cement clinkers more environmentally sound.  相似文献   

16.
Lim TT  Chui PC  Goh KH 《Chemosphere》2005,58(8):1031-1040
This study aimed to establish an optimized, closed loop application of ethylenediaminetetraacetic acid (EDTA) in heavy metal removals from a contaminated soil through integrating EDTA recovery/regeneration and metal precipitation processes in the treatment train. Three divalent heavy metals were investigated, namely, Pb, Cd, and Ni. The extractability of the metals by EDTA followed the decreasing order of CdPb>Ni. The first part of this study was to search for the optimal use of the fresh EDTA in removing these heavy metals from the contaminated soil. The second part of this study was devoted to the recovery/regeneration of the spent EDTA which followed the sequential processes involving (1) complex destabilization by adding ferric ion (Fe(III)) to liberate Pb, Cd, and Ni, (2) precipitation of the liberated Pb, Cd, and Ni in phosphate (PO4(3-)) forms, and (3) precipitation of the excess Fe(III) which eventually produced free EDTA for reuse. The process variables were dosages of Fe(III) and PO4(3-), pH and reaction times. Laborious trial experiments would be needed in searching for the optimum conditions for the above processes. To expedite this exercise, a geochemical equilibrium model, MINTEQA2, was used to find the thermodynamically favorable conditions for recoveries of both EDTA and heavy metals. This was then followed by experimental examination of the process kinetics to observe for the optimal reaction time for each thermodynamically favorable process. This study revealed that 2 h of reaction time each for the complex destabilization reaction and the metal phosphate precipitation reaction was sufficient to achieve equilibrium. With the optimized process condition identified in this study, a total of 95%, 89% and 90% of the extracted Pb, Cd and Ni, respectively, could be precipitated from the spent EDTA solution, with 84% EDTA recovery. The reused EDTA maintained more than 90% of its preceding extraction power in each cycle of reuse.  相似文献   

17.
The concentrations of nickel, copper, iron, chromium, lead, cadmium, manganese and zinc have been studied in a small river in South Wales. The river drains the contaminated industrial wasteland of the Lower Swansea Valley which is currently undergoing redevelopment and landscaping activity. The high trace metal levels found in the river waters result from weathering and erosion of this waste material, as well as from two industrial point sources of nickel, and iron and chromium. Hydrological factors found to be of importance in determining current spatial and temporal patterns of contamination included: (1) the river's available dilution at any one time, (2) antecedent river flow conditions, (3) river water pH and (4) the prevailing runoff processes in operation at any one time. The metals are present mostly in their dissolved state (i.e. > 70%), with the exception of iron and chromium which are present mostly as particulates (i.e > 80%).  相似文献   

18.
由R175型柴油机、微粒捕集器(Φ90 mm×150 mm)、CF-G10型臭氧发生器组成实验系统,进行了臭氧再生法离线再生研究。研究表明,在190℃温度下,再生气从DPF上游侧进气再生时,臭氧可以有效再生DPF,再生效率可达90%以上,再生效率达到65%左右时发生臭氧穿透,臭氧利用率下降;穿透时间点随微粒捕集时的柴油机载荷增大而提前,随微粒捕集时间增加而提前;臭氧供给量不变,再生气流量越大,再生效果越明显;再生气从DPF下游侧进气再生时,臭氧穿透时间点较上游侧进气再生滞后,但发生穿透后DPF几乎不再再生,总再生效率低于70%。结果表明,微粒捕集器臭氧再生法是可行的,对于如何提高臭氧利用率需进一步研究。  相似文献   

19.
The metal concentrations in a copper mine tailings and desert broom (Baccharis sarothroides Gray) plants were investigated. The metal concentrations in plants, soil cover, and tailings were determined using ICP-OES. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in tailings was 526.4, 207.4, 89.1, 84.5, 51.7, 49.6, 39.7, and 35.6mgkg(-1), respectively. The concentration of all elements in soil cover was 10-15% higher than that of the tailings, except for molybdenum. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in roots was 818.3, 151.9, 73.9, 57.1, 40.1, 44.6, 96.8, and 26.7mgkg(-1) and 1214.1, 107.3, 105.8, 105.5, 55.2, 36.9, 30.9, and 10.9mgkg(-1) for shoots, respectively. Considering the translocation factor, enrichment coefficient, and the accumulation factor, desert broom could be a potential hyperaccumulator of Cu, Pb, Cr, Zn, As, and Ni.  相似文献   

20.
Between March 2006 and June 2008 removal of 34 trace elements was measured on a monthly basis at three horizontal-flow constructed wetlands in the Czech Republic designed to treat municipal wastewater. In general, the results indicated a very wide range of removal efficiencies among studied elements. The highest degree of removal (average of 90%) was found for aluminum. High average removal was also recorded for zinc (78%). Elements removed in the range of 50-75% were uranium, antimony, copper, lead, molybdenum, chromium, barium, iron and gallium. Removal of cadmium, tin, mercury, silver, selenium and nickel varied between 25 and 50%. Low retention (0-25%) was observed for vanadium, lithium, boron, cobalt and strontium. There were two elements (manganese and arsenic) for which average outflow concentrations were higher compared to inflow concentrations. Reduced manganese compounds are very soluble and therefore they are washed out under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号