首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
明确硝酸盐的主要来源及转化过程对地下水氮污染防治和水资源开发利用具有重要意义.为了探明滇池周边浅层地下水中硝酸盐污染现状及来源,于2020年雨季(10月)和2021年旱季(4月)在滇池周边共采集73个浅层地下水样,运用水化学和氮氧同位素(δ15N-NO3-δ18O-NO3-)识别浅层地下水中硝酸盐的空间分布、来源及转化过程,并结合同位素混合模型(SIAR)定量评价不同来源氮对浅层地下水硝酸盐的贡献.结果表明,旱季浅层地下水中有40.5%的采样点ρ(NO3--N)超过地下水质量标准(GB/T 14848)Ⅲ类水质规定的20 mg·L-1,雨季超过47.2%的采样点ρ(NO3--N)超过20 mg·L-1.氮氧同位素和SIAR模型分析结果证明了土壤有机氮、化肥氮、粪肥和污水氮是浅层地下水硝酸盐的主要来源,以上氮源对旱季浅层地下水中硝酸盐的贡献率分别为13.9%、11.8%和66.5%,对雨季的贡献率分别为33.7%、31.1%和25.9%,而大气氮沉降贡献率仅为8.5%,对该区浅层地下水中硝酸盐来源贡献较小.硝化作用是旱季浅层地下水中硝态氮转化的主导过程,雨季以反硝化作用为主,且反硝化作用雨季比旱季明显.  相似文献   

2.
基于多同位素的不同土地利用区域水体硝酸盐源解析   总被引:7,自引:6,他引:1  
不同的土地利用类型对所在流域内的水质产生不同的影响.本研究选取典型城市河流(京杭运河杭州段)和典型山林农业区河流(余英溪)为研究对象,利用多同位素技术(δD-H2O,δ18O-H2O,δ15N-NO3-δ18O-NO3-)结合稳定同位素(stable isotope analysis in R,SIAR)模型,对运河和余英溪的硝酸盐来源进行了识别并计算了各污染源的贡献率.结果表明,运河和余英溪均存在不同程度的氮污染,运河以NO3--N和NH4+-N为主,余英溪以NO3--N为主.运河和余英溪水的氢氧同位素(δD-H2O,δ18O-H2O)沿当地大气降水线分布,两者存在明显线性关系(R2=0.78),表明降水是这两条河流的主要补给源.运河和余英溪水体NO3-的氮同位素值(δ15N-NO3-)均小于15‰,说明这两条河流中主要存在硝化作用.部分运河水样NO3-δ15N-NO3-/δ18O-NO3-值介于1.3~2.1之间且伴随着低浓度的DO和NO2-,可见部分运河水体存在反硝化作用.运河水样δ15N-NO3-值(均值:6.1‰)明显高于余英溪水体δ15N-NO3-值(均值:2.3‰).各NO3-源对运河的贡献率:生活污水/粪肥(37.0%) > 土壤氮(35.7%) > 化学肥料(19.1%) > 降水(8.2%);对余英溪的贡献率:化学肥料(46.1%) > 土壤氮(22.8%) > 降水(17.3%) > 生活污水/粪肥(13.8%).在人类活动强度大的城市区域的河流(运河)中由于生活污水的零星排放和城市降雨径流的汇入导致生活污水/粪肥类氮源的污染明显加剧.化学肥料不可避免地成为山林农业区河流(余英溪)的主要污染源,可见农业面源污染带给所在区域水体的氮污染已非常严重.人类活动强度大的区域,降水对于水体NO3-的贡献降低.反硝化作用产生的同位素分馏对利用SIAR模型计算各NO3-源的贡献率产生不同程度的影响,其中对生活污水/粪肥和化学肥料的影响很大,对土壤氮的影响其次,对降水的影响最低.  相似文献   

3.
郑涛  秦先燕  吴剑雄 《环境科学》2024,45(2):813-825
巢湖是我国水污染防治的重点水体,但近年来一直处于较高的富营养化水平.以巢湖二级支流店埠河流域内的地表水和地下水为研究对象,测试不同水体水化学组成和氢氧同位素值,综合运用数理统计、Piper三线图、Gibbs图和离子比值等方法,分析其季节性和空间变化特征,探讨地表水和地下水的水化学特征和形成机制.结果表明,①大气降水是店埠河流域地表水和地下水的主要补给来源,地表水的蒸发分馏效应比地下水更显著.不同时期,地表水比地下水更富集氢氧稳定同位素.地表水和地下水中氢氧稳定同位素均呈季节性变化特征,丰水期相对富集,枯水期相对贫化.②店埠河流域地表水和地下水均为弱碱性水,地表水中各离子浓度明显小于地下水,地表水中阳离子以Ca2+和Na+为主,地下水中阳离子以Ca2+为主,水体中的优势阴离子均为HCO3-.地表水的水化学类型以HCO3·Cl-Na·Ca型水为主,地下水以HCO3-Na·Ca型水为主.③地表水和地下水主要水化学指标浓度具有一定的时空差异性.从丰水期到枯水期,地表水中TDS、K+、Na+、Ca2+、Mg2+、Cl-和SO42-浓度整体呈现上升趋势.地下水中Na+、Ca2+和Mg2+浓度整体变化不大,略有增加趋势,Cl-、SO42-和NO3-浓度整体呈上升趋势.从上游到下游,地表水中主要水化学指标浓度呈现先减小后增大的趋势,NO3-浓度增幅最大.地下水在径流方向上主要水化学指标浓度整体变化不大,但呈现出排泄区大于补给区的规律.④水体水化学特征的形成主要受水-岩作用控制,同时还受到人为因素影响.水-岩作用主要为硅酸盐岩、盐岩和碳酸盐岩等矿物的风化溶解.污水处理厂污水、生活污水和粪肥等污染物已明显改变了局部水体的水化学特征.⑤与2016年相比,地表水中的NO3-浓度已有不同程度地减少,当地政府进行的氮污染控制工作已取得一定成效,但仍需在店埠河下游、部分支流(定光河和马桥河)和部分居民点加强对污水及粪肥的污染防控.  相似文献   

4.
王雨旸  杨平恒  张洁茹 《环境科学》2022,43(10):4470-4479
为明确城市地区岩溶地下水系统硝酸盐污染来源和生物地球化学过程,于2019年7月至2020年10月期间,采集了重庆市老龙洞地下河流域内的污水、井水和地下河水,测定其水化学和硝酸盐氮氧双同位素值(δ15 N-NO3-δ18 O-NO3-).结果表明:①污水的δ15 N-NO3-δ18 O-NO3-分别介于-3.3‰~14.6‰和-5.2‰~20.6‰之间,说明污水中的硝酸盐主要来源于生活污水排放及化肥渗漏;井水的δ15 N-NO3-δ18 O-NO3-分别介于3.1‰~12.6‰和2.9‰~8.9‰之间,说明井水中的硝酸盐主要来自于粪肥及土壤有机氮矿化分解;地下河水中的δ15 N-NO3-δ18 O-NO3-分别介于5.6‰~28.6‰和-2.0‰~15.7‰之间,说明市政污水以及农田中施用的粪肥是地下河水中主要的硝酸盐来源.②基于MixSIAR模型计算得出,粪肥污水是地下河水中硝酸盐的主要贡献源,贡献占比为89.1%,土壤有机氮、化肥和大气降水贡献率分别为4.4%、3.4%和3.1%.③流域内的COD :ρ(NO3-)由低到高依次为:井水(0.14~5.15)、地下河水(0.50~9.36)和污水(4.08~89.50).仅有50%井水样品的COD :ρ(NO3-)略高于反硝化发生的化学计量比最低限(0.65),说明COD可能不足以支撑井水中发生反硝化,井水中的硝酸盐氮氧双同位素未发生明显富集,验证了井水中未发生反硝化作用;90%地下河水样品的COD :ρ(NO3-)高于0.65,硝酸盐氮氧双同位素同步富集,δ15 N :δ18 O为1.8,介于反硝化发生时的1.3~2.1,说明地下河水在流动过程中发生了反硝化作用;所有污水样品的COD :ρ(NO3-)远高于0.65,其中25%污水样品的COD :ρ(NO3-)高于发生异化还原为铵(DNRA)的优势化学计量比(29.34),δ15 N-NO3-ρ(NH4+):ρ(NO3-)同步升高,表明污水中可能发生了DNRA.  相似文献   

5.
联合PMF模型与稳定同位素的地下水污染溯源   总被引:1,自引:1,他引:0  
张涵  杜昕宇  高菲  曾卓  程思茜  许懿 《环境科学》2022,43(8):4054-4063
基于传统水质监测与污染排放的污染源识别方法,存在监测频率与识别结果模糊等限制,难以实现污染源及迁移转化的准确量化.联合多元统计分析与稳定同位素技术,以成都平原典型混合用地区地下水污染为研究对象,提出利用正定矩阵因子分析(PMF)模型识别污染主控因子,减小环境因素对污染源判别的干扰,并基于水化学分析与土地利用构建贝叶斯稳定同位素混合模型,进一步量化不同污染源对地下水典型污染物硝酸盐氮(NO3-)的贡献率.结果表明,研究区地下水NO3-、NO2-、NH4+、Mn、Fe、SO42-和Cl-均存在不同程度超标,且具有空间异质性.地下水中"三氮"主要以NO3-为主,NO3-浓度在菜地的地下水中普遍偏高(平均值为9.29 mg·L-1),其次是在养殖场(平均值为7.66 mg·L-1)和耕地(平均值为7.09 mg·L-1),在工业区最低(平均值为2.20 mg·L-1).研究区地下水水质受原生地质作用、农业活动、水文地球化学演化、生活污染和工业污染的复合影响,且农业活动是研究区地下水NO3-增长的主要原因.研究区内农业区地下水NO3-的主要来源贡献为化肥(32%)和土壤氮(25%);工业区地下水NO3-的主要来源贡献为污水排放(28%)和大气降雨(27%).通过多元统计与稳定同位素技术的有机结合,有效识别了地下水污染来源及其贡献率,可为地下水污染源头防控提供科学依据.  相似文献   

6.
任坤  潘晓东  梁嘉鹏  彭聪  曾洁 《环境科学》2021,42(5):2268-2275
利用多同位素(C、N和O)和水化学方法解析贵州八步地下河流域水体中硝酸盐(NO3-)来源与转化过程,利用SIAR模型定量计算NO3-不同输入端的贡献比例.结果表明,研究区地下水NO3-污染严重,近38%的地下水样品NO3-超过饮用水限值.地下水的δ15N-NO3值介于2.3‰~30.33‰,均值9.68‰,δ18O-NO3值介于2.65‰~13.73‰,均值6.64‰,δ18O-H2O值介于-8.83‰~-7.37‰,均值-8.18‰.同位素组成(δ15N-NO3δ18O-NO3δ18O-H2O)指示硝化作用主导着流域内氮素循环.硝化作用产生的硝酸加速了碳酸盐岩溶解,导致地下水中δ13CDICδ15N-NO3存在显著负相关性(P<0.001),说明δ13CDICδ15N-NO3相结合是判断岩溶水中NO3-转化的有效手段.地下水和地表水中NO3-主要来源于土壤氮、粪肥污水和铵态氮肥料,其对地下水中NO3-贡献率分别为36.19%、33.71%和30.1%,对地表水贡献率分别为39.15%、36.08%和24.77%.岩溶流域内污水处理应同时去除污水中的NO3-和NH4+,农业区应科学施肥,以有效降低地下水中NO3-的补给通量.  相似文献   

7.
由于岩溶水文系统的地球化学敏感性和脆弱性,岩溶地下水NO3-污染已成为世界范围普遍存在的环境问题,而岩溶山区地下水硝酸盐来源解析对于保障区域供水安全和人体健康具有重要意义.因此,本文选取贵州中部典型岩溶山区城镇主要供水流域地表水和地下水为研究对象,基于土地利用类型,联合水化学分析及δ15N-NO3-δ18O-NO3-示踪技术对水体硝酸盐分布特征、来源贡献及迁移转化过程进行研究.结果表明,研究区水体溶解性无机氮以硝态氮为主,水体NO3-含量及分布与区域土地利用方式密切相关,硝酸盐污染主要集中于住宅用地和耕地 &林地区岩溶地下水中.水体NO3-主要来源于与农业活动和城镇化建设有关的土壤有机氮、化肥及粪便污水,水体氮循环主导过程为硝化作用,反硝化作用基本不存在.稳定同位素模型(SIAR)分析结果显示,区域水体硝酸盐主要受当地农业活动及城镇化过程影响,其中,土壤有机氮、化肥及粪便污水对地表水硝酸盐的贡献率分别为50.24%、27.97%和24.58%,对地下水硝酸盐的贡献率分别为54.58%、24.58%和20.15%,大气降水来源贡献率较低.  相似文献   

8.
选择密云水库上游承德市滦平盆地为研究区,通过不同土地利用类型地下水"三氮"含量、土壤全氮含量和包气带可溶硝态氮含量,结合水体硝酸盐氮氧双同位素、硫酸盐硫氧双同位素多种环境同位素特征和地下水放射性碳同位素测年示踪硝酸盐来源.结果表明,滦平盆地水体氮形态以硝态氮为主,地下水NO3-质量浓度与居民用地、旱地土地利用类型显著相关,硝酸盐污染主要集中于居民建设用地和农用地区域浅层地下水中.13.79%地下水样品NO3-质量浓度超过国标(GB/T 14848-2017)地下水硝酸盐限值Ⅲ类标准,超标范围为1.04~3.86倍;37.93%地下水样品NO3-质量浓度超WHO饮用水硝酸盐浓度限值,超标范围为1.08~6.83倍.地下水NO3-质量浓度、土壤全氮和浅层土壤可溶硝态氮空间变异受结构性因素和人为因素共同作用影响.地下水硝酸盐来源主要为家畜粪尿和生活污水混合污染,其次为化学肥料淋滤;盆地山前地下水径流区包气带-地下水氮循环主导过程为硝化作用.以盆地系统作为独立单元研究水环境硝酸盐污染来源和归趋规律,对流域整体地下水污染防治和修复具有重要意义.  相似文献   

9.
江南  周明华  李红  李子阳  章熙峰  朱波 《环境科学》2020,41(10):4539-4546
长江上游山区以浅层地下水作为主要供水水源,但其极易受到农业生产等活动所导致的硝态氮(NO3--N)污染.本文选取长江上游典型山区农业小流域作为研究对象,对土地利用与管理强度和水文地质条件等进行了野外调查,阐明其浅层地下水NO3--N时空变异特征并分析其影响因素.结果表明,研究小流域地下水中NO3--N质量浓度变化范围为0.40~12.51 mg ·L-1,超标率近30%.受降雨和管理强度影响,丰水期降雨量和施肥量增加,土壤中氮素在降雨驱动下淋溶流失进入浅层地下水,呈现出丰水期NO3--N质量浓度(6.73 mg ·L-1)高于枯水期NO3--N质量浓度(6.28 mg ·L-1)的时间变异特征.在空间上,小流域地下水中NO3--N质量浓度呈现坡耕地和居民区集中分布的截留和大兴子流域中地下水NO3--N质量浓度(截留子流域:6.58mg ·L-1;大兴子流域:6.34 mg ·L-1)高于苏荣子流域(5.20 mg ·L-1)的特征,主要由不同子流域地下水埋深和土地利用类型的空间分异特征导致.此外,浅层地下水NO3--N质量浓度与Cl-、NH4+-N、DOC和SO42-质量浓度呈正相关,而与pH值呈负相关,表明地下水化学因子亦是其不可忽略的影响因素.因此,加强山地农业小流域浅层地下水NO3--N时空变异特征及其影响因素研究对防控山区农村浅层地下水硝态氮污染和保障饮用水安全十分必要.  相似文献   

10.
明晰区域水污染现状及污染物与污染源之间的关系是实施水环境精细化管理和区域水污染治理对策的前提.水质标识指数法(WQI)和聚类分析(CA)被用于研究2015~2019年秦淮河流域29个监测站点的11个水质参数的时空变化特征,并利用PMF模型和SIAR同位素源解析模型解析秦淮河流域的污染物来源及贡献率.结果表明,秦淮河流域河道水体总体为中度污染,TN浓度超标是流域水体污染的主要原因;2015~2019年WQI值呈现下降的趋势;空间聚类和PMF分析结果显示:①高污染区位于秦淮河下游城市化程度较高的城区、溧水主城和江宁大学城内的河道及牛首山河,污染源主要为生活污水、商服业污水(28.88%)及工业废水排放(27.43%);②中污染区位于秦淮河下游的江宁开发区和秣陵街道及中上游的禄口街道内河道,主要污染源为城乡生活废水和商服污水(31.62%)、工业废水(27.25%)和内源污染(24.76%);③低污染区位于秦淮河流域湖熟街道内河道及二、三干河,主要污染源为农村生活污水和生活垃圾(28.79%)及农业非点源污染(24.3%);云台山河子流域内NO3--N是氮污染物在子流域受纳水体中的主要存在形式,SIAR溯源结果显示云台山河子流域的NO3--N主要来源于生活污水(61%)和土壤有机氮(34%).本研究结果可为秦淮河流域水污染治理和水生态保护措施提供科学依据和基础.  相似文献   

11.
无定河流域地表水硝酸盐浓度的时空分布特征及来源解析   总被引:1,自引:1,他引:0  
徐奇峰  夏云  李书鉴  王万洲  李志 《环境科学》2023,44(6):3174-3183
无定河流域作为黄河的一级支流,其水生态环境质量深刻影响着黄河流域生态保护与高质量发展.为识别无定河流域硝酸盐污染来源,对2019~2021年期间无定河的地表水样品进行了采集,探究了流域地表水体硝酸盐浓度的时空分布特征及影响因素,借助水化学方法、氮氧同位素示踪技术以及MixSIAR模型定性和定量地确定了地表水硝酸盐各来源及其贡献率.结果表明,无定河流域硝酸盐浓度存在显著时空差异.时间上,丰水期地表水NO-3-N浓度均值高于平水期;空间上,下游地表水NO-3-N浓度均值高于上游.地表水硝酸盐浓度的时空差异主要受降雨径流、土壤类型以及土地利用类型的影响.无定河流域地表水丰水期硝酸盐的主要来源是生活污水及粪肥、化学肥料和土壤有机氮,其贡献率分别为43.3%、 27.6%和22.1%,降水的贡献率仅占7.0%.不同河段地表水硝酸盐污染源贡献率存在差异,上游土壤氮贡献率明显高于下游,为26.5%;而下游生活污水及粪肥的贡献率明显高于上游,为48.9%.可为无定河乃至干旱及半干旱地区的河流硝酸盐来源解析和污染治理...  相似文献   

12.
重庆南山表层岩溶泉与地下河三氮运移及氮通量估算   总被引:7,自引:4,他引:3  
张远瞩  贺秋芳  蒋勇军  李勇 《环境科学》2016,37(4):1379-1388
岩溶区特殊的地质构造使地下水系统存在多重水流.为研究三氮在表层岩溶带水流和地下河水流中的特征和运移方式,选取城市化进程中的重庆南山老龙洞地下河流域表层岩溶泉和地下河按月采样,分析水化学特征,结合SPSS的相关性分析,认为两种水流三氮特征差异很大.表层岩溶泉三氮质量浓度月变化小,受降水、污水影响较小,NO_3~--NNH_4~+-N;地下河水三氮质量浓度月变化大,受降水、污水影响较大,旱季NH_4~+-NNO_3~--N,雨季NO_3~--NNH_4~+-N.表层岩溶泉DIN主要来源于与农业活动有关的非点源污染,在土壤、表层岩溶带中经氨化、吸附、硝化作用等过程以扩散流形式运移至出露地表.地下河DIN随管道流、扩散流运移,并以管道流为主.DIN全年有点源的工业、生活污染物经落水洞、裂隙、溶隙进入.雨季同时存在占更大比例的非点源污染物,或由降雨产生的表面坡流、壤中流、表层岩溶带水流经落水洞进入,或经深裂隙、溶隙下渗进入,硝化作用明显.流域DIN输出通量为56.05 kg·(hm~2·a)~(-1),其中NH_4~+-N、NO_3~--N分别占46.03%、52.51%;根据径流分割法估算出点源污染、非点源污染的贡献率分别为25.08%、74.92%.  相似文献   

13.
为研究岩溶区农业活动为主导的地下河流域硝酸盐污染来源,于2017年5~10月每24 d左右对重庆青木关流域6个采样点进行监测,利用~(15)N和~(18)O同位素技术对示踪硝酸盐来源进行解译,应用IsoSource模型计算出不同端元硝酸盐的贡献率.结果表明:(1)青木关农业区地下河系统存在较大的硝酸盐污染风险,大部分采样点出现不同程度NO_3~--N浓度超标现象.(2)空间上,青木关地下河中NO_3~--N浓度整体呈现由上游向下游升高的趋势.时间上,上游鱼塘和岩口落水洞以及下游姜家泉样点NO_3~--N浓度在5~6月因受农业施肥的影响,均呈上升趋势,6~9月受降水影响而出现不同程度升高或降低,9月之后随着农业活动减少而逐渐降低;中游土壤点NO_3~--N浓度保持较高值;中下游大鹿池NO_3~--N浓度较低且变幅不大.(3)通过硝酸盐~(15)N和~(18)O同位素分析,表明上游鱼塘和岩口落水洞的硝酸盐源于土壤有机氮、动物粪便及污废水混合;中游土壤点硝酸盐源于土壤有机氮、降水和肥料中NH_4~+;中下游大鹿池中硝酸盐来源于动物粪便及污废水、土壤有机氮、降水和肥料中NH_4~+的混合作用.地下河出口处姜家泉硝酸盐污染严重,其源于土壤有机氮、降水和肥料中NH_4~+、动物粪便及污废水、大气沉降的综合作用.(4)基于IsoSource模型对地下河出口处硝酸盐来源进行定量分析,发现动物粪便及污废水贡献率占46.4%,土壤有机氮占32.6%,降水与肥料中NH_4~+占18.6%,大气沉降仅占2.4%.  相似文献   

14.
钱塘江兰溪段地表水质季节变化特征及源解析   总被引:6,自引:1,他引:5  
季节变化对水质的影响评价是流域水质管理的重要内容之一.选取钱塘江兰溪段6个监测点位为研究对象,测定了2010和2011年丰水期和枯水期12个水质指标,采用因子分析技术识别关键污染因子及来源的季节变异特征,并基于层次聚类分析和改进的模糊数学方法进行不同季节关键污染因子空间差异性分析和水质综合评价.结果表明,枯水期关键污染因子为来源于城镇集中式生活污水处理厂、纺织业等点源的CODMn、BOD5和NH4+-N,丰水期为来源于农业面源的NH4+-N、TP和工业点源的CODMn;枯水期和丰水期关键污染因子存在空间差异性,无论枯水期还是丰水期,费垅为重污染区域,横山、洋港和将军岩为轻度污染区域;其不同之处在于枯水期女埠和西门码头为中度污染区域,而丰水期则为轻度污染区域;关键污染因子综合水质丰水期优于枯水期,丰水期16.7%的监测点位综合水质归属于V类,而枯水期50%的监测点位综合水质归属于V类.  相似文献   

15.
巢湖水体氮磷营养盐时空分布特征   总被引:16,自引:6,他引:10  
在不同汛期对巢湖水体进行了网格化样品采集,研究了巢湖水体中氮磷营养盐的含量与时空分布规律,确定了巢湖水体的主要污染因子.结果表明,巢湖入湖河流中TP、TN和NO-3-N指标均超过了Ⅴ类水标准,南淝河和十五里河中TP、TN、NH+4-N和NO-3-N表现出丰水期低于平水期、枯水期的季节性变化特征,在其他河流则呈现出丰水期高于枯水期、平水期的特征;巢湖湖体氮磷营养盐浓度的分布存在时空差异,西部湖区中氮磷营养盐含量远高于东部湖区;TP、TN和NH+4-N表现出在枯水期高于平水期和丰水期的变化特征,而NO-3-N在丰水期的含量较高;巢湖水体的主要污染因子为TN和NH+4-N,这些污染物从西往东质量浓度不断减少.  相似文献   

16.
流域水质时空分布特征及其影响因素初析   总被引:6,自引:8,他引:6  
选取闽东南九龙江流域21个典型小流域开展2010年丰(8月)、平(11月)、枯(2月)3个水期的基流水质监测,并借助GIS、多元统计分析方法识别流域水质的时空分布特征及其影响因素,为九龙江流域水质监测、管理与控制提供依据.结果表明,九龙江水质枯水期最差,平水期次之,丰水期水质较好.表征生活污水、工业废水的污染因子对水质变化的贡献率为45.58%,表征农业污染的主成分的贡献率为21.28%.NH4+-N、SRP、高锰酸盐指数、K+、Cl-、Mg2+、Na+浓度与建设用地比例、人口密度呈显著的正相关,NO3--N浓度与耕地比例有显著的正相关,自然用地面积比例与NO3--N、K+、Cl-、Na+浓度有显著的负相关.建设用地比例较大、人口较密集的小流域NH4+-N、SRP、高锰酸盐指数、K+、Cl-的浓度较高,耕地比例较大的小流域NO3--N浓度则较高.在流域水质管理上,建议提高污水处理率,并重视由于化肥施用导致的农业非点源污染对水质的影响.  相似文献   

17.
温瑞塘河流域水体污染时空分异特征及污染源识别   总被引:7,自引:1,他引:6  
不同季节主要污染物的空间分布特征及其潜在的污染源分析对水资源管理与污染控制具有重要意义.本研究应用GIS、主成分分析方法对2008-09~2009-10温瑞塘河水的温度、DO、电导率、p H、浊度、NH+4-N、NO-2、NO-3、PO3-4、Si O2-3、H2S、TOC、TN等水质参数进行时空分异特征分析和潜在污染源的识别.结果表明流域内丰水期、平水期、枯水期的典型污染物是TN、NH+4-N、PO3-4,主要来自于工业和生活点源;空间上水质污染程度是三级河道二级河道一级河道,无论几级河道市区的水质都劣于郊区和湿地;时间上水质污染程度是枯水期平水期丰水期;另外河道周边人口密度、土地利用类型及其调水对温瑞塘河的水质产生了不同程度的影响.  相似文献   

18.
东江干流水体氮的时空变化特征及来源分析   总被引:1,自引:0,他引:1  
为了防治东江氮污染并进行针对性水体治理,于2013年7月(丰水期)和2014年1月(枯水期)全面调查了东江干流水体氮的时空变化特征,并利用附生藻的稳定性氮同位素示踪技术对东江水体氮进行了溯源研究.结果表明,TN、NO-3-N、NH+4-N在丰水期的平均浓度分别为2.70、1.63、0.21 mg·L-1,高于枯水期(TN,2.04 mg·L-1;NO-3-N,1.49 mg·L-1;NH+4-N,0.31 mg·L-1);东江水体氮含量较高,且主要以NO-3-N形态存在.各形态氮浓度自上游至下游的变化趋势表现为,TN和NO-3-N先递减再升高,NH+4-N则逐渐递增.稳定性氮同位素示踪表明,面源输入的人畜粪便、养殖废水及农业化肥等是上游区域氮的主要来源,贡献率约占91%;而在下游区域,城市污水的贡献率逐渐增大,并成为氮的主要来源,贡献率达到54%.  相似文献   

19.
沙颍河流域典型癌病高发区水体硝态氮污染及健康风险   总被引:1,自引:0,他引:1  
分别在雨季和旱季对癌病高发区地表水和地下水进行采样分析,探讨该区域地表水和地下水NO~-_3-N和NO~-_2-N污染状况、季节变化和空间分布特点,以及相应的健康风险.结果表明,雨季地表水和地下水NO~-_3-N含量明显高于旱季.受污染沙颍河水的影响,沿岸癌病高发村庄饮水井雨季NO~-_3-N污染严重,平均含量达到38.32 mg·L~(-1),超标近3倍,而旱季则存在NO~-_2-N污染,平均含量达到0.69 mg·L~(-1).研究区癌病高发村庄居民存在饮水NO~-_3-N暴露的健康风险,其年平均健康总风险达到1.02×10~(-8) a~(-1),为其他村庄居民的6倍以上,饮水NO~-_3-N污染是癌病高发村庄居民的健康危害因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号