首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
基于广安市2017年6月-2018年5月逐日平均国控站点空气质量监测数据,该文对广安市PM_(2.5)组成特征及污染贡献源进行解析。结果表明,监测期间广安市PM_(2.5)主要成分为元素碳(30%)、有机碳(30%)和混合碳(12%);颗粒物首要污染源为燃煤(22%),工艺过程源(19%)、扬尘源(18%)和二次源(18%)贡献率也较高,机动车、生物质和其他源贡献率都较低;工业源(工艺过程和燃煤)、扬尘源和机动车为广安市主要污染来源,不同季节污染源贡献率有所不同,春季扬尘源贡献突出,秋季主要表现为扬尘源、工业源(工艺过程和燃煤)和机动车,夏季和冬季工业源(工艺过程和燃煤)贡献率突出,其次为扬尘源;工业源(工艺过程和燃煤)、机动车、扬尘源、生物质燃烧是春季PM_(2.5)浓度上升的主要原因;夏季则是工业源(工艺过程和燃煤)、机动车、扬尘源;秋季机动车是导致PM_(2.5)升高的主要原因;冬季工业源(工艺过程和燃煤)、扬尘源、生物质燃烧是PM_(2.5)浓度上升的主要原因;污染期间应重点管控工业源(工艺过程和燃煤)、扬尘源和机动车,春季和冬季还应加强生物质燃烧源控制。  相似文献   

2.
京津冀郊区站点秋冬季大气PM2.5来源解析   总被引:3,自引:0,他引:3  
王彤  华阳  许庆成  王书肖 《环境科学》2019,40(3):1035-1042
为了增进对京津冀地区大气PM_(2.5)来源情况的认识,于2014~2015年秋冬季在京津冀地区4个郊区站点进行了PM_(2.5)的采样,并用化学质量平衡模型(chemical mass balance model,CMB)进行了PM_(2.5)源解析工作.结果表明:二次颗粒物(36%~58%)、交通(8%~26%)、民用燃煤(8%~16%)和生物质燃烧(5%~16%)是京津冀郊区站点秋冬季PM_(2.5)的主要贡献源.其中,二次硝酸盐是大部分站点秋冬季PM_(2.5)的首要贡献源(11%~27%).不同污染程度的源解析显示,冬季各站点各污染源在重污染天的贡献变化趋势的同步性不如秋季明显,且秋季二次源在重污染天的贡献增加值(47. 2~115. 7μg·m~(-3))明显高于一次源(29. 5~43. 4μg·m~(-3)),但此现象在冬季不显著.对比北京市城区源解析结果,发现郊区燃煤总贡献率较为相似,但郊区燃煤源中多以民用燃煤为主,这说明对于京津冀城郊地区,控制民用燃煤源对PM_(2.5)污染控制有重要意义.  相似文献   

3.
通过对广州市城区PM_(2.5)的质量浓度和含碳气溶胶的组分连续1 a的采样分析,获得了广州地区PM_(2.5)中含碳气溶胶的年变化特征,对广州市PM_(2.5)中有机碳OC的来源和烃类有机物的主要来源进行了分析。结果表明,化石燃料燃烧和汽车尾气污染对广州市PM_(2.5)中含碳有机物的贡献较大,植物排放对春秋季PM_(2.5)有一定的贡献,而夏季则同时受到植物源和人为源的污染;采用散点图法和比值-比值法对多环芳烃的来源进行了分析,机动车排放对低环数PAHs(Flu、Pyr)的贡献较大,生物质燃烧对高环数PAHs(Bghi P、Icd P)具有显著贡献,而且存在一定的光化学老化,而藿烷和EC主要来自机动车排放源;广州市PM_(2.5)中有机碳OC的主要来源为机动车排放、燃煤排放、生物质燃烧、餐饮油烟、二次形成和其他来源,冬季分别贡献15.3%、20.5%、8.0%、11.5%、14.9%和29.8%。  相似文献   

4.
2014年在吉林市设立7个大气PM_(2.5)采样点,分采暖季和非采暖季分别采样分析了吉林市城区大气颗粒物污染特征和可能来源。结果表明:吉林市大气颗粒物以PM_(2.5)为主,PM_(2.5)年均值65μg/m3,超过国家二级标准限值86%,PM_(2.5)/PM10的年平均值为61%;PM_(2.5)中,休闲生活区各个时间段金属元素浓度相对较低,工业混合区浓度较高;非金属离子SO2-4、NH+4、NO-3、Cl-是PM_(2.5)水溶性离子的主要成份,其和占PM_(2.5)质量的13.31%,在采暖期浓度质量全部高于非采暖期;采暖期OC和EC来源基本相同,来源于机动车尾气、燃煤和生物质燃烧等,在非采暖期OC和EC来源差异性较大,主要来源于机动车尾气和工业燃煤等。  相似文献   

5.
为研究鞍山市PM_(2.5)中碳组分的化学特征,于2014年7月和2015年1月在鞍山市建成区6个监测点位采集PM_(2.5)样品,并用热光碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过分析2个季节PM_(2.5)中OC和EC的化学特征、比值及其相关性,以及SOC的估算值,定性分析了鞍山市PM_(2.5)中碳质气溶胶的来源;利用因子分析法,进一步分析了其来源.结果表明,夏季和冬季PM_(2.5)的平均浓度分别为(53.4±18.0)和(124.9±60.1)μg/m3.夏季PM_(2.5)中OC和EC的质量浓度分别为(5.44±0.84)和(2.29±0.49)μg/m3;冬季PM_(2.5)中OC和EC的质量浓度分别为(21.47±12.45)和(4.68±1.79)μg/m3.夏季和冬季各点位的OC/EC值的变动范围分别为2.18~2.70和4.04~4.95.相比冬天,夏季OC和EC的相关性较强.夏季和冬季SOC的估算值分别为2.12,11.95μg/m3.鞍山市大气PM_(2.5)中碳组分主要来源于生物质燃烧源、燃煤源、汽车排放和道路扬尘源.  相似文献   

6.
《环境科学与技术》2021,44(4):97-103
为研究鞍山市春秋季PM_(2.5)中碳组分的污染特征及来源,该文于2014年10月和2015年4月在鞍山市设立6个点位采集PM_(2.5)样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。通过对鞍山市PM_(2.5)中OC和EC的浓度水平、OC与EC的相关性及比值、二次有机碳(SOC)的估算和主成分分析等进行研究,分析了鞍山市春秋季PM_(2.5)碳组分的污染特征和来源。结果表明,春季和秋季PM_(2.5)浓度的日均值分别为(94.28±10.27)μg/m~3和(118.60±12.92)μg/m~3;春季PM_(2.5)中OC和EC的质量浓度分别为(12.44±1.53)μg/m~3和(3.80±0.74)μg/m~3;秋季PM_(2.5)中OC和EC的质量浓度分别为(18.53±1.92)μg/m~3和(4.74±1.24)μg/m~3,OC、EC在春秋季的差异具有统计学意义,各监测点位OC与EC浓度均表现为秋季高于春季;春季和秋季各点位的OC/EC值均大于2,说明各采样点位在春秋季均存在二次污染;相关分析表明,春秋季的OC与EC均显著相关,说明春秋季OC与EC来源相似;采用OC/EC最小比值法估算SOC含量,得到春季和秋季SOC浓度分别为4.65和10.37μg/m~3;主成分分析结果表明,鞍山市大气PM_(2.5)中碳组分主要来源于燃煤、生物质燃烧、道路扬尘和机动车尾气。  相似文献   

7.
用GC/MS,对金华地区3个采样点、四个季节,225个PM_(2.5)样品中10种极性有机示踪化合物进行了分析,包括天然源:3个异戊二烯SOA示踪物、1个α-蒎烯SOA示踪物和2个真菌孢子示踪物,和人为源:1个甲苯SOA示踪物、3个生物质燃烧示踪物.结果表明,异戊二烯SOA示踪物浓度为3.41~48.50 ng·m~(-3),α-蒎烯SOA示踪物浓度为2.45~25.40 ng·m~(-3),甲苯SOA示踪物为4.75~39.80 ng·m~(-3).各SOA示踪物均有明显的季节变化,其中,异戊二烯SOA示踪物呈夏季秋季≈春季冬季,α-蒎烯SOA示踪物夏季春季≈秋季冬季,甲苯SOA示踪物秋季夏季春季冬季.估算得出甲苯SOC对OC的贡献为3.03%~24.50%,而来源于生物质燃烧的有机碳对OC的贡献可以达到1.23%~42.80%.表明人为源排放前体物的二次转化以及生物质燃烧是金华地区大气细颗粒物污染的重要来源.  相似文献   

8.
目的了解铜陵市颗粒物中的元素特征和主要来源。方法选择2014年冬季和春季的部分时段,在铜陵市国家环境空气监测站——新民污水处理厂(工业区)采集PM_(10)和PM_(2.5)样品,使用X射线荧光光谱(XRF)法进行元素的定量测试。采样期间,冬季的空气质量以良和中、轻度污染为主;春季以中度和重度污染天气为主,采样期间出现了明显的重污染。结果 PM_(2.5)和PM_(10)中S和Si元素的浓度均比其余元素高,P和Cu元素的浓度远低于其余元素。空气污染的指数越高,Fe、Mg、Al、Si则更易富集在PM_(10)上,而K、Cu、Na、Cl、S元素更易富集在PM_(2.5)上,Ca和P这两种元素在PM_(10)和PM_(2.5)上的富集程度相当。空气颗粒物中,富集最多的元素是K,其次为Fe和Mg;元素Cu、K、Cl在PM_(10)中的富集程度要高于PM_(2.5)。结论扬尘(包括地面扬尘和建筑尘)是PM_(10)的最大来源,其次是开采矿山和燃烧生物质,燃煤、炼铜等工企业排放贡献最小;对于PM_(2.5)而言,最大的来源是风沙、扬尘和开采矿山,其次是燃煤、燃烧生物质和其他的工企业排放,炼铜的贡献最小。  相似文献   

9.
《环境科学与技术》2021,44(2):85-89
为探究自贡市冬季大气PM_(2.5)污染特征,文章分析了自贡市冬季大气PM_(2.5)中水溶性离子、无机元素和碳质组分的浓度水平及来源。结果表明,二次无机离子(NO_3~-、SO_4~(2-)、NH_4~+)是自贡冬季PM_(2.5)中水溶性离子的重要组成部分,占PM_(2.5)质量浓度的45.8%。SOR和NOR值分别为0.45和0.31,说明自贡市二次离子污染较为严重;PM_(2.5)中无机元素总浓度为2.7μg/m~3,占PM_(2.5)质量浓度的3.9%。通过富集因子法分析,Pd、Te、Ag、Cd、Sb、Se、Mo、Sn、Hg、Br、Cs、Tl为高度富集;As、Co、Sc、Ga、Pb、Cr、Zn、Cu、Ni为中度富集;Al、K、Mn、V、Ba为轻度富集;TC质量浓度为19.3μg/m~3,其中OC为11.7μg/m~3、EC为7.5μg/m~3,分别占PM_(2.5)质量浓度的15.3%、9.8%。PM_(2.5)中SOC平均浓度为1.6μg/m~3,占OC的13.7%;自贡市冬季PM_(2.5)来源贡献大小依次为二次硝酸盐(24.5%)、移动源(20.9%)、二次硫酸盐(18.1%)、工业源(17.2%)、生物质燃烧源(10.1%)、扬尘源(9.2%),应重点管控移动源、水泥行业、道路扬尘和施工扬尘、生物质燃烧等排放源。  相似文献   

10.
为明确邯郸市PM_(2.5)中碳组分污染浓度、来源和近年来的变化,分别于2015和2017年1、4、7、10月在河北工程大学能环实验楼4层采集PM_(2.5)样品,采用热/光碳分析仪测定了样品中8种碳组分含量,并计算得到有机碳(OC)、元素碳(EC)、Char-EC和Soot-EC含量.结果表明,2017年PM_(2.5)中碳组分浓度较2015年下降约15%,质量分数下降约17%,季节变化均表现为冬高夏低的特点;2017年SOC浓度和SOC/PM_(2.5)、SOC/OC比值均低于2015年,SOC浓度和SOC/PM_(2.5)比值下降约36%,季节分布特征相似(秋冬高、春夏低).两年除夏季外,其余季节OC、EC相关系数均高于0.7,表明存在共同来源;2017年OC、OC1与EC相关性高于2015年,此外,两年中EC1~EC3、Char-EC和Soot-EC与各组分相关系数差异较大;两年中Char-EC与OC、EC的相关性(r=0.5~1.0)明显高于Soot-EC与OC、EC的相关性(r=0.1~0.6),这主要与二者形成机理有关.碳组分之间的关系和主成分分析结果表明,燃煤、生物质燃烧和柴油车尾气的混合源是2015年碳质组分的主要来源,而2017年则来源于燃煤和机动车尾气排放.  相似文献   

11.
为探讨厦门市冬季大气PM_(2.5)含碳组成特征,于2014-12-10至2015-01-09同步采集了城区和郊区的PM_(2.5)样品。采用热光透射法分析了PM_(2.5)中OC、EC的质量浓度。结果表明,近年来厦门市PM_(2.5)、OC、EC的浓度表现出逐年降低的趋势。城区和郊区的OC平均浓度分别为9.77±1.87和9.17±2.42μg/m~3,EC平均浓度分别为1.87±0.73和2.43±1.10μg/m~3,与国内外其他城市相比,厦门市冬季大气PM_(2.5)中的OC、EC浓度均处于较低水平,人为引起的大气含碳成分污染相对较轻。城区和郊区的OC/EC值均大于2,SOC占OC比例分别高达34.96%、39.03%,厦门大气PM_(2.5)中的OC受到二次污染较严重。PM_(2.5)、OC、EC的分布规律表明,OC、EC受到了除天气条件以外的其他因素如OC和EC污染源种类、源强以及二次转化程度的影响。城区(R2=0.107 9)和郊区(R2=0.341 9)的OC与EC相关性不明显,初步判断厦门市冬季PM_(2.5)中OC和EC的来源较复杂,EC可能主要来自化石燃料和生物质不完全燃烧等一次排放源,OC则主要受到化石燃料燃烧和二次污染的影响,城区污染源还包括烹饪源以及生物质燃烧。  相似文献   

12.
成都市西南郊区春季大气PM2.5的污染水平及来源解析   总被引:5,自引:2,他引:3  
为了解成都市西南郊区大气中PM_(2.5)污染特征,于2015年3月1~31日对成都西南郊区大气PM_(2.5)进行膜样品采集,并分析其中的化学组分.结果表明,3月成都市西南郊区大气PM_(2.5)的日均质量浓度为121.21μg·m~(-3),采集的31个有效PM_(2.5)样品中有24个样品日均浓度在75μg·m~(-3)以上,日超标率为77%,该地区3月PM_(2.5)污染严重.在与大气气象要素的关系研究中发现,大气颗粒物PM_(2.5)与大气能见度有着较好的指数关系,与温度、湿度有一定的正相关关系,但相关性并不明显.水溶性阴阳离子中NH~+_4(16.24%)、SO~(2-)_4(12.58%)、NO~-_3(9.91%)占PM_(2.5)的主导地位,NO~-_3/SO~(2-)_4的比值是0.77,表明成都西南郊区固定源的污染要大于移动源的污染,燃煤排放的污染相对于汽车尾气较多.有机碳(OC)/元素碳(EC)比值均大于2.0,表明有二次有机碳(SOC)产生.利用OC/EC比值法估算SOC的质量浓度发现,成都西南郊区3月PM_(2.5)中SOC的平均浓度水平为3.49μg·m~(-3),对OC的贡献率达20.6%,说明成都市西南郊区的OC主要来源于一次排放,且OC与EC的相关性分析显示,其相关系数达0.95,说明OC、EC来源相似且相对稳定,成都市西南郊区春季受局地源排放影响较大,一次排放占主导地位,二次有机碳对OC贡献相对较小,与估算所得的SOC性质一致.利用主成分分析(PCA)方法对成都西南郊区大气中PM_(2.5)进行来源解析,发现成都西南郊区PM_(2.5)的主要污染源为燃煤、生物质的燃烧、二次硝酸盐或硫酸盐、土壤和扬尘源、汽车尾气源、电子生产源以及机械加工源.  相似文献   

13.
为探究临沂市PM_(2.5)和PM_(10)中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM_(2.5)和PM_(10)进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM_(2.5)和PM_(10)中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM_(2.5)中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧源、扬尘源、机动车排放和工业源,贡献率分别为22.64%、 7.49%、 41.22%、 14.71%和13.94%.PM_(10)中元素来源主要有扬尘源、燃煤和铜冶炼的混合源、机动车排放和工业源,贡献率分别为55.47%、 19.80%、 7.48%和12.83%.由此可见,扬尘源和燃煤与铜冶炼的混合源是临沂市颗粒物污染形成过程中的重要源类.  相似文献   

14.
该研究通过对邯郸市环境空气中PM_(2.5)样本进行采集和成分检测,分析了该地区PM_(2.5)的浓度及化学组成特征,利用相关性分析法和富集因子法定性判断了PM_(2.5)的主要来源,利用PCA模型定量计算了各类污染源的贡献率,最后将解析结果与已有的PMF模型结果进行了对比分析。结果表明,邯郸市PM_(2.5)日均浓度(2012年10月13日-2013年1月)为146.9 g/m3,是我国环境空气质量标准(Ⅱ级)的2倍。二次水溶性离子、OC、EC是邯郸市PM_(2.5)的主要成分,约占PM_(2.5)总质量浓度的71.5%,其中,OC是PM_(2.5)中含量最丰富的单个组分,大气有机污染特征明显。PCA模型源解析结果为:工业和燃煤33.3%,二次气溶胶和生物质燃烧21.7%,机动车为12.8%,道路扬尘9.1%。将PCA、PMF模型解析结果对比后发现2种模型对PM_(2.5)的来源有较为一致的判定,工业源和燃煤源是该地区PM_(2.5)的主要来源,两者的总贡献率分别为42.1%(PMF)和33.3%(PCA)。除此之外,PMF单独解析出了Ba、Mn、Zn源,K、As、V源和重油燃烧源,PCA单独解析出了生物质燃烧源,不同的解析结果一方面与模型本身有关,另一方面与模型选择的化学成分有关。  相似文献   

15.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

16.
2013年秋季在南昌市6个采样点采集了60个大气PM_(2.5)样品,用热光透射法测定了PM_(2.5)样品中OC和EC的含量,并分析了OC/EC值、二次有机碳SOC浓度水平以及OC和EC的相关性。结果显示:采样期间南昌市大气PM_(2.5)日均值为45.7μg/m~3;OC和EC的浓度范围分别为4.6~15.8μg/m~3和1.5~8.2μg/m~3;各采样点OC/EC均值范围为2.0~3.5,说明各采样点均存在SOC的生成;SOC、一次有机碳POC和总碳TC浓度平均值分别为2.0、9.0和15.5μg/m~3,SOC/OC范围13.6%~31.1%(均值19.1%),SOC/PM_(2.5)范围2.9%~7.2%(均值4.6%);石化、建工学校、省外办和京东镇政府采样点PM_(2.5)中OC和EC的相关性相对较好,来源较为相近;武术学校和林科所OC和EC的相关性较不显著,来源相对复杂。  相似文献   

17.
烟台市环境受体PM2.5四季污染特征与来源解析   总被引:2,自引:0,他引:2  
于2016~2017年四季在烟台市3个点位采集了PM_(2.5)样品,分析了其质量浓度和化学组分特征.利用CMB模型对受体进行解析,并利用后向轨迹和PSCF对传输气流和潜在源区进行了分析.结果表明,烟台市监测点位冬季、春季、夏季和秋季的PM_(2.5)平均质量浓度分别为(89. 45±56. 80)、(76. 78±28. 44)、(32. 65±17. 92)和(57. 32±24. 60)μg·m~(-3). PM_(2.5)浓度表现出明显的季节变化特征(P 0. 01).全年PM_(2.5)各源类分担率大小依次为:二次硝酸盐源(20. 3%)城市扬尘源(15. 7%)机动车排放源(14. 9%)燃煤源(13. 8%)二次硫酸盐源(12. 8%) SOC(6. 1%)建筑水泥尘源(5. 5%)海盐源(2. 9%),可以看到烟台市以二次源、扬尘、机动车排放源和燃煤源为主要污染源.春季硝酸盐源和城市扬尘源是重要贡献源类,夏季硫酸盐源贡献突出,燃煤源在秋冬季占比突出.烟台市气流输送和潜在源区也呈现出明显的季节变化:冬季主要受烟台市短距离输送的影响;夏季主要受烟台东部沿海和本地的影响;春秋季主要受山东东北部和东部沿海地区的区域传输和烟台市本地源的影响.  相似文献   

18.
兰州市大气PM_(2.5)的化学组分特征及其来源研究   总被引:1,自引:1,他引:0  
为探讨兰州市大气细颗粒物化学组成及其污染来源,对兰州市大气PM_(2.5)中水溶性离子、无机元素以及OC和EC进行了研究。结果表明:PM_(2.5)浓度及其化学组成具有明显的季节变化特征,PM_(2.5)浓度为冬季>春季沙尘>春季>夏季;水溶性离子以SO_4~(2-)、NH_4~+和NO_3~-浓度最高,占总水溶性离子的78.7%~87.1%,表明该地区的二次污染较为严重,主成分分析表明水溶性离子主要来源于燃烧源和土壤源;无机元素以Zn、Pb和Ba浓度最高,主要来源于燃煤和机动车源;OC冬季浓度最高,而EC夏季浓度最高,并形成了较严重的二次有机碳污染。  相似文献   

19.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气.  相似文献   

20.
北京冬季PM2.5中金属元素浓度特征和来源分析   总被引:6,自引:2,他引:4  
为了解北京冬季细颗粒物中金属元素的浓度水平及其来源,于2014年12月至2015年1月使用中流量PM_(2.5)采样器在北京城区开展了为期30 d的连续采样,采用滤膜称重法检测PM_(2.5)浓度,电感耦合等离子体质谱法(ICP-MS)分析PM_(2.5)中16种元素总量,并采用富集因子法和因子分析法分析元素污染特征及其来源.结果表明,观测期间PM_(2.5)中主要金属元素为K、Ca、Fe、Al和Mg,占16种元素总量的90.7%.与白天相比,地壳元素如Mg和Al等在夜间的浓度下降30%以上,而人为源金属元素如Cu和Pb等的浓度则上升40%以上.从优良天到重污染天气,上述16种金属元素的总浓度上升1倍,但其在PM_(2.5)中的比例却逐渐降低,说明金属元素的富集不是PM_(2.5)上升的主要原因.随着污染程度的加剧,Cu、Zn、As、Se、Ag和Cd等主要来自人为源的金属元素浓度上升较快,重度污染天与优良天的浓度比值范围为2.9~5.3;而Al、Mg、Ca、Mn和Fe等地壳元素浓度上升则较缓,重度污染天与优良天的浓度比值范围为1.2~1.8.北京冬季PM_(2.5)中金属元素主要来源于燃煤和生物质燃烧、交通和工业排放以及地面扬尘,贡献率分别为34.2%、25.5%和17.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号