首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
以三氯化铁和硫酸铝为混凝剂,印染废水二级生化出水为研究对象,并利用XAD-8/XAD-4吸附树脂联用技术将印染废水生化出水中溶解性有机物分为疏水酸、非酸疏水物质、弱疏水物质及亲水物质4类有机物,通过小试实验探讨了2种混凝剂对生化出水中各类溶解性有机物的去除效果及特点。实验结果表明,对于该印染废水的生化出水,溶解性有机物的主要成分是疏水性物质,以DOC表征时占总DOC的75%,其中疏水酸约占41%,疏水性物质也是引起色度的主要物质,所占比例以ADMI7.6表征时为89%,其中以非酸疏水物质的贡献最大,达到52%,并且非酸疏水物质中不饱和双键或芳香环有机物的含量较高。在三氯化铁和硫酸铝各自最佳的混凝条件下,均能够有效去除由疏水性物质(疏水酸和非酸疏水物质)引起的色度,但三氯化铁对弱疏水性物质以及亲水物质的去除率高于硫酸铝,这使得三氯化铁对印染废水生化出水中的溶解性有机物的去除效果优于硫酸铝。并且三氯化铁和硫酸铝混凝工艺均能明显降低生化出水的毒性。  相似文献   

2.
Several recent studies have shown that n-octanol/water partition coefficients may not be a good predictor for estimating soil sorption coefficients of persistent organic pollutants (POPs), defined here as chemicals with log Kow greater than 5. Thus, an alternative QSAR model was developed that seems to provide reliable estimates for the soil sorption coefficients of persistent organic pollutants. This model is based on a set of calculated molecular connectivity indices and evaluated soil sorption data for 18 POPs. The chemical's size and shape, quantified by 1chi, 3chiC and 4chiC(v) indices, have a dominant effect on the soil sorption process of POPs. The developed QSAR model was rationalized in terms of potential hydrophobic interactions between persistent organic pollutants and soil organic matrix. Its high predictive power has been verified by an extensive internal and external validation procedure.  相似文献   

3.

Bioretention, also known as rain garden, allows stormwater to soak into the ground through a soil-based medium, leading to removal of particulate and dissolved pollutants and reduced peak flows. Although soil organic matter (SOM) is efficient at sorbing many pollutants, amending the bioretention medium with highly effective adsorbents has been proposed to optimize pollutant removal and extend bioretention lifetime. The aim of this research was to investigate whether soil amended with activated carbon produced from sewage sludge increases the efficiency to remove hydrophobic organic compounds frequently detected in stormwater, compared to non-amended soil. Three lab-scale columns (520 cm3) were packed with soil (bulk density 1.22 g/cm3); activated carbon (0.5% w/w) was added to two of the columns. During 28 days, synthetic stormwater—ultrapure water spiked with seven hydrophobic organic pollutants and dissolved organic matter in the form of humic acids—was passed through the column beds using upward flow (45 mm/h). Pollutant concentrations in effluent water (collected every 12 h) and polluted soils, as well as desorbed amounts of pollutants from soils were determined using GC-MS. Compared to SOM, the activated carbon exhibited a significantly higher adsorption capacity for tested pollutants. The amended soil was most efficient for removing moderately hydrophobic compounds (log K ow 4.0–4.4): as little as 0.5% (w/w), carbon addition may extend bioretention medium lifetime by approximately 10–20 years before saturation of these pollutants occurs. The column tests also indicated that released SOM sorb onto activated carbon, which may lead to early saturation of sorption sites on the carbon surface. The desorption test revealed that the pollutants are generally strongly sorbed to the soil particles, indicating low bioavailability and limited biodegradation.

  相似文献   

4.
Lee CL  Kuo LJ 《Chemosphere》1999,38(4):807-821
This study presents an overall sorption model to estimate the sorption equilibrium coefficients of hydrophobic organic pollutants for heterogeneous aquatic systems. This proposed model combines a series of sorption equilibrium relationships including the adsorption of dissolved organic matters on particulates, the binding between organic pollutants and dissolved organic matters, and the sorption of organic pollutants on particulates with or without the presence of dissolved organic matters. By using this model, variations among the sorption equilibrium coefficients with the concentrations of dissolved organic matters are obtained. Also discussed herein are case studies involving pollutants having a wide spectrum of K(ow)s, different types of dissolved organic matters, different pH values and ionic strengths. In most of the case studies, the sorption equilibrium coefficients initially increase with the-concentrations of dissolved organic matters and, then, decrease after reaching a maximum value. This study also addresses the relative errors of partition coefficients attributed to the negligence of the effect caused by the dissolved organic matter, the so-called third-phase effect.  相似文献   

5.
The fate of hydrophobic organic pollutants in the aquatic environment is controlled by a variety of physical, chemical and biological processes. Some of the most important are physical transport, chemical and biological transformations, and distribution of these compounds between the various environmental compartments (atmosphere, water, sediments and biota). The major biogeochemical processes that control the fate of hydrophobic organic compounds in the aquatic environment are reviewed. These processes include evaporation, solubilization, interaction with dissolved organic matter, sediment-water partitioning, bioaccumulation and degradation. Physico-chemical parameters used to predict the aquatic fate of such compounds are also discussed.  相似文献   

6.
可吸附有机卤化物的深度处理实验研究   总被引:5,自引:0,他引:5  
可吸附有机卤化物(AOX)是人为污染的重要标志之一,北京高碑店污水处理厂二级出水中约90%的AOX为可吸附有机氧化物(AOCl),研究了自氧氧化,粒状活性炭吸附,粉末活性炭吸附3种深度处理工艺对二级出水中AOX的去除作用,臭氧的氧化反应最多可去除约38%的AOX,粒状活性炭床可运行3200床体积,吸附容量为0.14mgAOX/g GH-16型活性炭,投加木质粉末活性炭200mg/L及25mg/L的聚合氯化铝,能去除24.7%的AOX。  相似文献   

7.
Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg(-1) of summation operator12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients.  相似文献   

8.
Anti-estrogenic activity in wastewater is gaining increased attention because of its endocrine-disrupting function. In this study, the level and removal efficiency by coagulation of anti-estrogenic activity in secondary effluents of domestic wastewater treatment plants were studied. Anti-estrogenic activity was detected in secondary effluent samples at a tamoxifen (TAM) equivalent concentration level of 0.38–0.94 mg-TAM L−1. Dissolved organic matters (DOM) with the molecular weight (MW) less than 3000 Da in hydrophobic acids (HOA) and hydrophobic neutrals (HON) fractions of the secondary effluent were the key fractions related to anti-estrogenic activity. Coagulation with FeCl3 and polyaluminium chloride (PAC) can remove the anti-estrogenic activity of the secondary effluents, but the removal efficiency was limited. The removal efficiency using FeCl3 coagulant was higher than that induced by PAC. Dissolved organic carbon was continuously removed with increased coagulant dose (0–120 mg L−1 FeCl3 or 0–60 mg L−1 PAC). However, the removal of anti-estrogenic activity was not enhanced further when the coagulant concentration was beyond a critical value (30 mg L−1 FeCl3 or 10 mg L−1 PAC). The highest removal of anti-estrogenic activity was about 36% by FeCl3 and 20% by PAC. Size exclusion chromatography results indicated difficulty in removing DOM with MW less than 3000 Da in the secondary effluent during coagulation even at a high coagulant concentration, which led to low removal efficiency of anti-estrogenic activity.  相似文献   

9.
Relatively "old" (stabilized) landfill leachates are a special category of wastewaters, which are difficult to treat further, mainly due to their bio-refractory organic content (humic substances). In this study, coagulation-flocculation was examined as post-treatment method for the biologically pre-treated stabilized leachates. The purpose was to examine the coagulation performance of alternative coagulant agents, i.e. the composite coagulant polyaluminium silicate chloride. Composite coagulants with different Al to Si molar ratio and different preparation methods were tested. Their efficiency was evaluated by monitoring from turbidity and phosphate content, other parameters strongly correlated with the presence of organic matter, such as UV absorbance at 254nm, COD and colour. The results suggest that the silica-based coagulants exhibit better coagulation performance, than the relevant conventional coagulant (alum) or simple pre-polymerized coagulants (PACl). Polyaluminium silicate chloride has greater tolerance against pH variation than alum or PACl, whereas this novel coagulant works better at pH values between 7 and 9. Coagulation-flocculation has proved to be an efficient post-treatment method for the biologically pre-treated leachates, promoting the removal of the refractory humic substances, while the treatment efficiency of coagulation can be improved by the application of the new coagulant agent.  相似文献   

10.
Membrane-enclosed sorptive coating (MESCO) is a miniaturised monitoring device that enables integrative passive sampling of persistent, hydrophobic organic pollutants in water. The system combines the passive sampling with solventless preconcentration of organic pollutants from water and subsequent desorption of analytes on-line into a chromatographic system. Exchange kinetics of chemicals between water and MESCO was studied at different flow rates of water, in order to characterize the effect of variable environmental conditions on the sampler performance, and to identify a method for in situ correction of the laboratory-derived calibration data. It was found that the desorption of chemicals from MESCO into water is isotropic to the absorption of the analytes onto the sampler under the same exposure conditions. This allows for the in situ calibration of the uptake of pollutants using elimination kinetics of performance reference compounds and more accurate estimates of target analyte concentrations. A field study was conducted to test the sampler performance alongside spot sampling. A good agreement of contaminant patterns and water concentrations was obtained by the two sampling techniques.  相似文献   

11.
Control of hazardous organic micropollutants is a challenging water quality issue. Dissolved humic organic matter (DOM) isolated from oxyhumolite coal mined in Bohemia was investigated as a complexation agent to remove polycyclic aromatic hydrocarbons (PAHs) and functionalized phenols from water by a two-stage process involving complexation and flocculation. After the formation of humic-contaminant complexes, ferric salts were added resulting in the precipitation and flocculation of the DOM and the associated pollutants. Flocculation experiments with ferric ion coagulants indicated that precipitation of oxyhumolite DOM together with the complexed contaminants occurred at lower ferric ion concentrations than with the reference DOM in acidic environments (pH approximately 3.5). The complexation-flocculation removal rates for non-reactive PAHs characterized by small localization energies of pi-electrons correlated well with the complexation constants. On the other hand, the combined complexation-flocculation removal rates for activated PAHs including trans-stilbene, anthracene and 9-methyl anthracene, as well as functionalized polar phenols, were higher than predicted from the complexation coefficients. Methodological studies revealed for the first time that the ferric ion coagulant contributed to enhanced removal rates, most probably due to ferric ion-catalyzed pollutant degradation resulting in oxidized products.  相似文献   

12.
生物过滤塔处理实验室废气   总被引:1,自引:0,他引:1  
研究了生物过滤塔处理实验室排放的模拟混合废气,考察了反应器对苯、甲苯、二甲苯、乙醇、丙酮、乙酸乙酯和甲烷等废气的去除效果。运行结果表明,在设备稳定运行期间,进气中总挥发性有机物(TVOCs)的浓度为124~380 mg/m3,而出气浓度在10~40 mg/m3,去除效率保持在85%以上。实验室废气中的多种污染物在生物过滤塔中去除机理不同,亲水性污染物的去除效率高于疏水性污染物。通过系统关停后重启,污染物的去除效果在第2天就能恢复,这为生物过滤塔处理实验室废气过程的停运检修或者系统闲置提供了可行性。  相似文献   

13.
Goal, Scope and Background Dissolved organic carbon (DOC) constitutes a parameter of organic pollution for waters and wastewaters, which is not so often studied, and it is not yet regulated by directives. The term ‘DOC’ is used for the fraction of organics that pass through a 0.45 μm pores’ size membrane. The type of wastewater plays an important role in the quality of DOC and it has been shown that DOC may contain aquatic humic substances, hydrophobic bases, hydrophobic neutrals, hydrophilic acids, hydrophilic bases and hydrophilic neutrals. The quality of the DOC is expected to affect its fate in a wastewater treatment plant (WWTP), since a considerable fraction of DOC is not biodegradable, and it may be released in the aquatic environment together with the treated effluent. In the present study, the occurrence of DOC during the wastewater treatment process is investigated and its removal rates during primary, secondary and overall treatment are being estimated. Furthermore, a correlation is being attempted between DOC and the concentrations of selected Persistent Organic Pollutants (POPs) and Heavy Metals (HMs) in the dissolved phase of wastewaters, to examine whether there are common sources for these pollution parameters in WWTPs. Also, DOC is being correlated with the partition coefficients of the above-mentioned pollutants in wastewater, in order to examine the effect of ‘solubility enhancement’ in WWTPs and to evaluate the result of this phenomenon in the efficiency of a WWTP to remove organic pollutants. Methods For the purposes of this study, 24-h composite wastewater samples were collected from the influent (raw wastewater, RW), the effluent of primary sedimentation tank (primary sedimentation effluent, PSE) and the effluent of secondary sedimentation tank (secondary sedimentation effluent, SSE). Samples were analyzed for the presence of 26 POPs (7 PCBs and 19 organochlorine pesticides), 8 HMs and DOC. Results and Discussion Mean concentrations of DOC in RW and PSE were at similar levels (∼ 70 mg l−1), suggesting that primary treatment has a minor effect on the DOC content of wastewater. DOC concentrations in SSE were significantly lower (∼ 19 mg l−1) as a result of the degradation of organic compounds in the biological reactor. Calculated removals of DOC were 0.8% in the primary treatment, 63% in the secondary treatment, and 69% in the overall treatment, exhibiting large differences from other organic pollution parameters, such as BOD and COD. The overall DOC removal was found to be independent from the DOC concentration in raw wastewater. Poor correlation was also observed between the DOC content and the concentrations of wastewater contaminants, such as persistent organic pollutants (POPs) and heavy metals (HMs), probably suggesting that their occurrence in WWTPs is due to different sources. A good negative linear relationship was revealed between DOC concentrations and the logarithms of the distribution coefficients (K d) of various POPs and HMs between the solid and the liquid phases of wastewater. This relationship suggests that DOC facilitates hydrophobic pollutants to remain in the dissolved phase thus causing lower removal percentages during the treatment process. Conclusion DOC was measured at three stages of a municipal WWTP that receives mainly domestic wastewater and urban runoff. DOC concentrations in untreated and primarily treated wastewater were almost equal, and only after the secondary sedimentation there was a decrease. Concentrations and removal rates of DOC were in the same levels as in other WWTPs that receive municipal wastewater. The origin of DOC was found to be different to the one of POPs and of HMs, as no correlation was observed between the concentrations of DOC and the concentrations of these pollutants. On the contrary, DOC was found to have significant negative correlation with the K d of all pollutants examined, suggesting that it plays an important role in the partitioning of those pollutants between the dissolved and the sorbed phase of wastewaters. This effect of DOC on partitioning can affect the ability of WWTPs to remove toxic pollutants, and that way it facilitates the discharge of those chemicals in the aquatic ecosystems together with the treated effluent. Recommendation By the results of this work it is shown that the presence of DOC in wastewaters can significantly affect the partition of hazardous pollutants between the dissolved and the sorbed phase. It is therefore of importance that this parameter is controlled more in wastewaters, since it can cause a decrease in the efficiency of WWTPs to remove quantitatively persistent pollutants.  相似文献   

14.
Phytoremediation to increase the degradation of PCBs and PCDD/Fs   总被引:1,自引:0,他引:1  
Phytoremediation is already regarded as an efficient technique to remove or degrade various pollutants in soils, water and sediments. However, hydrophobic organic molecules such as PAHs, PCBs and PCDD/Fs are much less responsive to bioremediation strategies than, for example, BTEX or LAS. PCDD/Fs and PCBs represent 3 prominent groups of persistent organic pollutants that share common chemical, toxicological and environmental properties. Their widespread presence in the environment may be explained by their chemical and biological stability. This review considers their fate and dissipation mechanisms. It is then possible to identify major sinks and to understand biological activities useful for remediation. Public health and economic priorities lead to the conclusion that alternative techniques to physical treatments are required. This review focuses on particular problems encountered in biodegradation and bioavailability of PCDD/Fs and PCBs. It highlights the potential and limitations of plants and micro-organisms as bioremediation agents and summarises how plants can be used to augment bacterial activity. Phytoremediation is shown to provide some new possibilities in reducing risks associated with dioxins and PCBs.  相似文献   

15.
为降低分流制雨水中悬浮颗粒物及其他污染物浓度,减轻城市景观河道的水体富营养化程度,对取自泵站的雨水进行混凝沉淀工艺优化实验。以PAC为混凝剂,采用Zeta电位仪、激光粒度仪和iPDA在线监测技术对混凝过程进行监测,考察了混凝剂投加量和水力搅拌速度对絮体形成和分流制雨水处理效果的影响,结果表明,混凝剂投加量和混合水力搅拌速度直接影响絮体Zeta电位和聚沉特性;混合搅拌速度控制混凝反应速率,絮凝速度梯度影响絮体形成粒径。FI曲线特征参数对控制混凝工艺具有指导意义。PAC投加量为35 mg/L,混合阶段搅拌速度800 r/min,搅拌30 s,絮凝阶段采用150、108和60 r/min的转速各自搅拌5 min,沉后水中剩余颗粒总数最少,浊度、COD和总磷去除效果最佳。  相似文献   

16.
通过采用GDX-502富集,GC-MS分析,对城市河流、湖库中的痕量有机污染物进行分析,共检出58种有机污染物,其中含有多种美国EPA公布的重点污染物,从而为痕量有机污染物的研究建立了灵敏度高,分辨率好的测试方法。  相似文献   

17.
18.
芦苇湿地对造纸废水中有机污染物的去除效果及机理   总被引:1,自引:0,他引:1  
为了对芦苇湿地对造纸废水中有机污染物的去除效果及降解机理进行研究,本文采用GC-MS联用仪对经芦苇湿地处理前后造纸废水中有机污染物的组成和含量进行测定,并通过叠放色谱图的方法对造纸废水中有机污染物的降解效果进行分析。结果表明:(1)经芦苇湿地处理前造纸废水中共测出30种有机污染物,其中8种被列入美国EPA环境优先控制污染物黑名单。(2)纸浆造纸废水生物塘-芦苇湿地复合处理系统对有毒有机污染物基本上达到了较好的去除效果:有机污染物总量减少80%以上,且降解后的产物多为毒性较小的烷烃类。(3)利用质谱手段对有机污染物的降解规律进行了初步研究。该研究为造纸废水处理和资源化利用提供了科学依据,为"造纸废水-芦苇-造纸"生态纸业循环经济模式的进一步推广应用奠定了基础。  相似文献   

19.
Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water.  相似文献   

20.
以硫酸亚铁盐为底物,培养以氧化亚铁硫杆菌为主要菌种的土著沥滤微生物,采用批式方法对湘江长沙段底泥进行微生物沥浸实验。实验结果表明,底物投加量与底泥固体浓度比(Sd/Sc)为1.5时已能满足底泥的微生物沥浸要求,进一步研究发现底泥固体浓度为13%、底物投加量为19.5 g/L、沥浸时间为6 d时,底泥中超标重金属Cd、Zn和Cu的去除率可分别达到83.1%、75.3%和61.2%;沥浸后底泥中大部分重金属以残渣态存在,且含量低于农用污泥中污染物控制标准,其中硫化物有机结合态Cu浸出较Zn、Cd需更低的pH,且Cu以间接机理浸出为主;以Fe2+为底物的沥浸体系中,黄铁矾的重吸附或共沉淀是沥浸实验后期重金属浸出率下降的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号