首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1 前言 粉尘粒度分布是粉尘的重要理化性质之一,其分布测定仪在煤炭、冶金、医药、化工、陶瓷和造纸等行业中已得到广泛的应用。粉尘粒度分布测定常用的方法有显微镜法、筛分法、沉降法。显微镜法费时费事,并且精确度难以保证;筛分法只能分析粗颗粒(d>38μm)粉尘;沉降法是根据斯托克斯原理来测定粉尘的粒径(或粒度分布)。随着科学技术的进步,现在运用沉降法的人越来越多,ALN-95型粉尘粒度分布测定仪是八五期间我国自行研制的测定粉尘粒度分布的仪器,它是基于斯托克斯原理和郎伯特-比尔定律研制成功的。经专家鉴定,其性能达到国际先进水平。2 原理  相似文献   

2.
冶金矿山常用的测定粉尘粒径和分散度的方法有:用显微镜法测尘粒几何形状的定向投影,得出定向粒径 d_F,再根据不同粒度区间尘粒数目占被测总数的百分数,求出粉尘的颗粒分散度;用重力沉降吸液法(或称沉降法),测得粉尘的斯托克思粒径 d_(st)。d_(st)并不等于尘粒的外形尺寸,当尘粒在介质中的沉降速度与该种岩石的某球形体的沉  相似文献   

3.
粉尘颗粒的大小通常用粒径表示。但是除人造的外,各种方式产生的粉尘粒子都不具有规则的几何形状。所谓的粒径仅是在当量或等效的概念下提出的表示颗粒大小的方法。因而采用不同的仪器测得的粒度分布结果是不一样的。在工业粉尘粒度分析中最常用的显微镜法和沉降法,本文对粉尘粒度分布函数及沉降径与投影径之间的关系,进行了某些探讨,为两种粒径的统一提供参考。  相似文献   

4.
点火延迟时间对粉尘最大爆炸压力测定影响的研究   总被引:5,自引:3,他引:2  
根据粉尘云形成时颗粒分散及沉降的时间效应,指出目前国际通行的球型爆炸装置采用固定点火延迟时间测定粉尘最大爆炸压力的方法具有不确定性,并以煤粉为介质在20 L标准爆炸球装置上进行系列爆炸实验,研究装置点火延迟时间对粉尘爆炸压力的影响。结果表明:点火延迟时间对粉尘爆炸压力测定有十分显著的影响,不同粒径粉尘的最大爆炸压力有不同点火延迟时间,目前仅以气相湍流度所确定的固定点火延迟时间下,所测粉尘最大爆炸压力可能严重偏离实际。  相似文献   

5.
可吸入性粉尘对环境、人体具有较大的危害,但由于粒径小而难以被除尘器直接捕集。电凝并是通过电场的作用使粉尘粒子荷电而发生凝并,使之有效直径增大从而便于捕集的简单、易行方法。研发采用偶极荷电凝并器并利用重力沉降作用测试可吸入性粉尘电凝并效应的实验装置,在测试段设置沉降板放置若干载玻片作为取样点。采用粉煤灰为实验样品,分别在未荷电、电压18 k V,20 k V 3种状态下进行对比实验研究。实验结果表明,研发的实验装置可以有效测试粉尘在测试段的沉降效果,显微镜直接观察和图像粒度分析处理以及中位径分析表明,荷电凝并后的粉尘粒径明显增大,大粒径粉尘百分比明显提高,平均粒径亦有所增大,且电压越高,效果越明显。  相似文献   

6.
气溶胶粉尘在玻璃表面的沉积行为研究   总被引:2,自引:0,他引:2  
玻璃是建筑装修的重要材料之一.有关玻璃的表面清洁技术非常丰富,但是对于粉尘粘附于玻璃表面的行为等的研究成果尚不多见.为此, 测定了玻璃片以不同角度放置在大气中,玻璃片表面粘附粉尘的分布规律和粉尘的粒径分布等特征;发现粘附于玻璃片上粉尘粒径分布不同于大气中的粉尘粒径分布,不同湿度对玻璃表面粘附的粉尘形状、粉尘数量和粒径影响很大.  相似文献   

7.
在工业生产环境中,粉尘云会对工作人员产生职业危害,也会对生产设备造成危害,导致生产中断甚至安全事故.电气设备在工业生产中不可或缺,研究人员为研究工业电气设备的防尘性能开发了一种1 m3粉尘环境模拟装置.该试验装置的基本功能是利用持续气流使粉尘在罐体内形成相对稳定分布的粉尘环境,其内部空间可放置电气设备进行长时间的试验.为预测粉尘在装置中的分布,利用Fluent中的离散相模型对惰性粉尘进行了粉尘环境模拟装置内扩散的数值模拟研究.结果表明,粒径为1 μm、10 μm、30 μm、50 μm和70 μm的粉尘均可以在装置内部形成粉尘云,其罐体中心质量浓度可维持在0.2~0.5 kg/m3.不同粒径的粉尘分布截然不同,粒径越小的粉尘扩散的均匀程度越高,而较大粒径粉尘的运动稳定性更好,但分布均匀度较差,保持进气速度在40 m/s以上可以获得良好的粉尘扩散效果.  相似文献   

8.
小麦粉是一种常见的工业粉体原料,在运输及储存过程中遇到点火源非常容易造成粉尘爆炸。采用对不同粒径分布下最低着火温度的测定,利用变异系数-灰色关联分析法确定小麦粉粒径分布与最低着火温度的综合关联度,再根据熵权-灰色关联分析法对研究结果进行验证。结果表明:小麦粉颗粒粒径分布对于最低着火温度的综合关联度如下:(d90-d10)/d50>d90/d10>d10>d50>d90,且在有限空间内,固定粒径条件下的粉尘爆炸强度随粉尘浓度的增大而增强。  相似文献   

9.
基于粉尘浓度测定和粉尘分布规律、运移规律和沉降规律研究的需要,在气溶胶粉尘发生器的基础上,设计了由计算机控制的全自动漏斗吸嘴式粉尘发生装置.提出了该装置的设计原理、设计结构及运行操作方法.基于C++设计了该装置的控制程序软件包,利用软件包中的驱动控制程序,实现了在计算机上对粉尘发生装置的远程遥控.监测传感器可及时发现吸嘴口是否出现粉尘堵塞,故障传感器同步监测步进电机和搅拌电机,通过微型计算机分析故障并发出相应控制指令.操作过程中,通过对圈数、时长、粉尘用量和密度的设置,可发生1种或多种粒径粉尘,控制发尘浓度、分散度,实现粉尘连续供给.通过发尘效果检验,得出在不同作业工序下,无论是连续产尘的喷浆、凿岩作业,还是瞬间产尘的爆破作业,该装置都具有较好的模拟产尘效果,产尘的分散度、浓度与现场实测值基本一致,表明该装置的粉尘粒度分布控制、产尘流量控制等技术达到了预期效果,可为研究粉尘相关特性试验提供稳定可靠、数量可控的粉尘源.  相似文献   

10.
利用激光粒度仪对三环唑粉尘的粒径分布进行分析,并用20 L爆炸球测试装置、哈特曼管装置探讨了粉尘质量浓度、点火延迟时间、点火能量、粒径分布对粉尘爆炸的影响并总结了相关规律。实验结果表明:粉尘粒度是影响粉尘最小点火能和爆炸下限的单调因素,粉尘质量浓度是影响粉尘爆炸压力的极值因素,点火延迟时间是影响粉尘最小点火能的极值因素。  相似文献   

11.
喷嘴作为煤矿喷雾降尘技术的最重要元件之一,其优选问题一直没有统一的方法,在一定程度上影响了喷雾降尘技术的最佳效果。为此,在尘雾耦合沉降实验基础上,找出了雾滴沉降粉尘规律,确定了粉尘与雾滴粒径的关系:D尘≈0.1 D雾;结合喷嘴性能实验,建立一种以喷嘴雾滴粒径与各工序粉尘粒径关系为主、常规性能参数为辅的优选方法,力求进一步改善井下喷雾系统,并在高庄煤矿综放面进行了应用。通过现场实测,降尘效果有所提高。  相似文献   

12.
通过对热喷涂现场粉尘进行采样和监测,分析了热喷涂粉尘的质量浓度、粒径分布、微观形貌及成分组成等理化特性,依此评估热喷涂粉尘潜在的危害。结果表明:热喷涂作业区域粉尘浓度普遍高于职业卫生标准规定的浓度限值;热喷涂粉尘粒径分布范围广,其中包含大量的微纳米粉尘颗粒,这些超细颗粒粉尘由于质量轻,受重力影响小,很难自然沉降,清除周期较长;粉尘含有多种金属元素,包括一些重金属,如铬、镍、铜等。这些特性决定了热喷涂粉尘危害的严重性,因此有必要采取保护措施减少其对从业人员的危害。  相似文献   

13.
为了研究橡胶粉尘的爆炸特性以及惰性粉体对橡胶粉尘的抑爆,用20 L球形爆炸装置测试橡胶粉尘的爆炸特性,分析粉尘浓度和粒径对橡胶粉尘爆炸压力(pmax)和爆炸指数(Kst)的影响,并且探究聚磷酸铵、磷酸二氢铵、碳酸钙和碳酸氢钠4种不同惰性粉体对橡胶粉尘的抑爆效果及不同粒径的聚磷酸铵对橡胶粉尘爆炸压力的影响。结果表明:在爆炸极限范围内,橡胶粉尘的爆炸压力随粉尘质量浓度增加先增大后减小;橡胶粉尘粒径越小,其爆炸后果越严重;聚磷酸铵对橡胶粉尘的抑爆效果相对较好;且在一定质量浓度范围内粒径越小,抑爆效果越好。  相似文献   

14.
为客观认识打磨、抛光、切削等不同机加过程中粉尘爆炸危险性,开发一种既使用哈特曼管也使用20 L球形爆炸测试装置改进的粉尘爆炸筛分测试方法。用此法对常见机加过程产生的85种铝及铝合金粉尘样品展开测试。分析不同加工方法对粉尘爆炸性的影响,使用X射线荧光法(XRF)分析粉尘在不同铝和铁含量下的爆炸性差异。利用热重分析-差示扫描量热法(TG-DSC)研究铝粉尘氧化程度和粉尘爆炸性的关系。研究表明:用所改进的方法,可将粉尘分为易爆、可爆、未爆等3类;抛光、打磨等机加过程粉尘爆炸危险性较高;各工业粉尘样品中易爆粉尘大多有40%以上铝含量或70%以上铁含量,可爆粉尘大多有40%以上铁含量;铝粉尘的爆炸危险与其氧化程度负相关,当单质含量小于5. 0%时铝粉尘已不再具有爆炸危险性。  相似文献   

15.
第三章呼吸性粉尘的检测粉尘对人体的危害,除了与粉尘的化学组成和在肺部的沉积量有关外,还和粒径的大小及其在呼吸系统的沉降位置有关,特别是与沉降在肺泡的粉尘粒径有至关重要的关系,通常把能够浸润到肺部敏感区的粉尘称为“呼吸性”(吸入性)粉尘,能在上呼吸道  相似文献   

16.
为研究糖粉粉尘爆炸特性,采用20 L球形爆炸装置进行试验测试,通过改变糖粉粒径来测定粉尘爆炸下限质量浓度(LEL)、爆炸压力以及爆炸指数特性参数,研究粒径对糖粉爆炸特性的影响。结果表明,随着粒径的减小,粉尘LEL先由70~80 g/m3降低到0~10 g/m3,再上升到20~30 g/m3;爆炸压力由0.75 MPa增大到1.07 MPa;爆炸指数由11.2 MPa·m/s增大到23.4 MPa·m/s。此外,粒径为45~53μm的3号粉尘的LEL为0~10 g/m3,其爆炸敏感度最高;而粒径小于等于45μm的4号粉尘的爆炸压力为1.07 MPa,爆炸指数为23.4 MPa·m/s,其爆炸烈度最大。随着粒径的减小,糖粉粉尘的爆炸烈度单调性增大。  相似文献   

17.
在求解煤的物性参数时,为探究煤粒平均粒径对参数求解的影响,以5种不同粒级的煤粒为研究对象,系统研究筛分现象和粒度分布;以煤粒瓦斯扩散系数求解为例,分析算术平均值、体积加权平均体积粒径对计算结果的影响.研究结果表明:煤颗粒在筛分过程中会出现特殊分选现象,目标粒级粒度分布仅占真实粒度分布的33.37%~49.32%;算术平...  相似文献   

18.
通过对燃煤锅炉、烧结机和催化裂化炉排放工业烟气的湿法脱硫装置进出口粉尘特性的测试分析,从粉尘的粒径分布、疏水性以及吸收塔的内部结构研究湿法脱硫对3种工业烟气粉尘的协同脱除效果。结果表明,湿法脱硫具有粉尘的协同脱除作用,燃煤锅炉可以通过高效的湿法脱硫协同达到超低排放;而烧结烟气的粉尘疏水性高于燃煤粉尘,脱除效率一般,需要采用更复杂的吸收塔结构;催化裂化的粉尘由于细颗粒物占比更大,颗粒物的脱除效果比燃煤粉尘效果略差。  相似文献   

19.
为了研究粉尘的可吸入部分对人体的危害,必须了解不同作业场所空气含颗粒物的组成分布。颗粒的组成分布有两种表示方法:一种是计数组成百分数,即某一粒级的颗粒数占所统计粒级范围的颗粒总数的百分数;另一种是计重组成百分数,即某一粒级的颗粒物的质量占所统计粒级范围的颗粒物总质量的百分数。两种表示方法的检测技术各不相同。我国目前公布的粉尘测定方法(GB-5748-85)规定粉尘分散度检测采用计数法,而国外由于采用呼吸性粉尘浓度,其分散度测定用的是计重法。  相似文献   

20.
为了研究彩虹粉引燃危险性,应用固体燃烧速率试验仪初步甄别了彩虹粉传播燃烧能力,发现堆垛状彩虹粉固体火焰传播危险性较低;采用粉尘爆炸筛选装置,判定彩虹粉具有爆炸性;应用最小点火能测定装置测定彩虹粉粉尘云的最小点火能在24~60 mJ之间,最优爆炸浓度为1 167 g/m3;应用快速筛选量热仪测试,彩虹粉在227℃开始分解;固体自燃点测试仪显示彩虹粉在250℃附近会发生自燃。向彩虹粉内添加不同比例相近粒径分布的食用盐粉体进行抑爆研究,结果证明食用盐对彩虹粉具有明显的抑爆效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号