首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Livestock production systems will inevitably be affected as a result of changes in climate and climate variability, with impacts on peoples’ livelihoods. At the same time, livestock food chains are major contributors to greenhouse gas emissions. Agriculture and livestock in particular will need to play a greater role than they have hitherto in reducing emissions in the future. Adaptation and mitigation may require significant changes in production technology and farming systems, which could affect productivity. Given what is currently known about the likely impacts on livestock systems, however, the costs of mitigating and adapting to climate change in the aggregate may not represent an enormous constraint to the growth of the global livestock sector, in its bid to meet increasing demand for livestock products. Different livestock systems have different capacities to adapt or to take on board the policy and regulatory changes that may be required in the future. Vulnerability of households dependent on livestock, particularly in the drier areas of developing countries, is likely to increase substantially, with concomitant impacts on poverty and inequity. The capacity of these systems to adapt and to yield up their carbon sequestration potential deserves considerable further study. Comprehensive frameworks need to be developed to assess impacts and trade-offs, in order to identify and target adaptation and mitigation options that are appropriate for specific contexts, and that can contribute to environmental sustainability as well as to poverty alleviation and economic development.  相似文献   

2.
The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.  相似文献   

3.
黄淮海平原冬小麦种植的气候变化适应评估   总被引:1,自引:0,他引:1  
水资源短缺影响黄淮海平原农业稳定和可持续发展。气候变化情景下,农业用水紧张的问题可能进一步加剧,种植制度和作物品种区域布局将面临调整。论文利用IPCC 5三种代表性温室气体浓度排放路径(RCP 2.6、RCP 4.5和RCP 8.5)的多模式集成数据,基于VIP(soil-Vegetation-atmosphere Interface Processes)生态水文模型,模拟了2011—2059年黄淮海平原二级子流域的水资源盈亏变化。在此基础上,针对水分亏缺最严重的子流域,设计无外来调水和维持2000—2010年调水总量水平的两种流域地下水采补均衡情景,对冬小麦种植区域的合理布局及其对产量的影响进行评估。结果表明,2050年代黄淮海平原农作物蒸散量增幅大于降雨量增幅,北部地区水分亏缺量将增加,南部地区水分盈余量则减少。在低到高的排放情景下,全区域水分盈余量下降0.1%~14.1%。两种地下水采补均衡情景下,2050年代黄淮海平原冬小麦种植面积应分别减少9.8%~11.3%和7.0%~8.8%,相应产量分别增加0~11.9%和3.0%~15.9%。适当减少冬小麦种植面积,可有效减缓黄淮海地区农业水资源的不足,保护生态环境,促进农业可持续发展。  相似文献   

4.
South Africa faces several development challenges including those linked to climate change. Energy usage in South Africa, for example, is already constrained because of a range of development challenges (the dependence on cheap coal as a heating source; energy availability; access; affordability of alternative energy sources; and a range of health impacts, including air pollution). Notwithstanding calls for a transition to a low carbon economy, there have been few, recent assessments in South Africa of the costs associated with such a transition, particularly the social and economic costs for the poor who use energy in a variety of ways. In this paper we focus on trying to unravel some of the complex energy-use behaviour including understanding what drives consumers in resource-poor areas to choose and use persistently risky energy options. Analysis of qualitative data in two township areas, Doornkop and Kwaguqa, shows that township households, whether electrified or not, continue to burn coal. In both study areas, an estimated 80% of electrified households burn coal for space heating and cooking and also make use of multiple fuel sources for a range of activities. Although the major obstacles preventing people from discontinuing domestic coal combustion are poverty, the ready availability and social acceptability of coal together with other social customs cannot be underrated. This paper therefore highlights some of the persistent challenges associated with sustainable energy transitions in South Africa including implications for improved mitigation and adaptation for the energy sector in wider climate change efforts.  相似文献   

5.
Coastal social ecological systems in eastern Africa are subject to a range of environmental, social and economic changes. They are already vulnerable to these multiple stressors, and the impacts of climate change are likely to further exacerbate their vulnerabilities. Some of these impacts may be observed and experienced already. The analysis presented in this paper is based on mixed methods empirical research exploring local perceptions of recent changes at four sites in coastal Tanzania and Mozambique. People recognise and rank a number of climate and non-climate stressors which have contributed towards more risky and less diverse livelihoods. Importantly, regional and international policy initiatives – in the form of river basin management in Mozambique and South Africa, and development of a Marine Protected Area in Tanzania – are perceived to further erode resilience and exacerbate vulnerabilities. We suggest this is a form of policy misfit, where policies developed to address a specific issue do not take account of cross-scale dynamics of change, the interactions between multiple stressors, nor longer term climate change. This policy misfit may be remedied by a move towards adaptive forms of governance, and necessitates an explicit focus on building the adaptive capacity of the poor and most vulnerable in society.  相似文献   

6.
The negative impact of climate change on crop production is alarming as the demand for food is expected to increase in coming years, at a rate of about 2 percent a year. Wet season rice (Oryza sativa) followed by mustard (Brassica juncea) is one of the prominent cropping sequences in Eastern India. Descreases in their productivity due to climate change will not only hamper the regional food security but also affect the global economy. Considering the fact, the present study aims to assess the impact of climate change on productivity of wet-season rice and mustard and to evaluate the effectiveness of agronomic adjustment as adaptation options. Crop growth simulation model (CGSM) is a very effective tool to predict the growth and yield of a crop. One CGSM, namely InfoCrop (Generic Crop Model), was calibrated and validated for the said crops for West Bengal State, Eastern India. After validation, the model was used to predict the yield under elevated thermal condition (1 and 3 °C rise over normal temperature). Moreover, the future weather situation as predicted by PRECIS (Providing Regional Climates for Impacts Studies) model was used as weather input of the CGSM and the yield was predicted for ten selected locations of West Bengal for the year 2025 and 2050. It was observed that the average yield reduction of the wet-season rice would be in the tune of about 20.0 % for 2025 and 27.8 % for 2050. The mustard yield of West Bengal may be reduced by 20.0 to 33.9 % for the year 2025 and up to 40 % for 2050. It was concluded that the negative impact of climate change on mustard grown in winter season will be more pronounced compared to wet-season rice. Adjustment of sowing time will be the simplest and effective adaptation option for both rice and mustard. Increased rate of nutrient application can sustain the rice yield under future climate. The older seedling at the time of transplanting of wet-season rice and increased seed rate of mustard were proved less effective.  相似文献   

7.
Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize (Zea mays L.), the third most important cereal crop in India, has a major role to play in country’s food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.  相似文献   

8.
Adaptation to changing water resources in the Ganges basin, northern India   总被引:1,自引:0,他引:1  
An ensemble of regional climate model (RCM) runs from the EU HighNoon project are used to project future air temperatures and precipitation on a 25 km grid for the Ganges basin in northern India, with a view to assessing impact of climate change on water resources and determining what multi-sector adaptation measures and policies might be adopted at different spatial scales.The RCM results suggest an increase in mean annual temperature, averaged over the Ganges basin, in the range 1–4 °C over the period from 2000 to 2050, using the SRES A1B forcing scenario. Projections of precipitation indicate that natural variability dominates the climate change signal and there is considerable uncertainty concerning change in regional annual mean precipitation by 2050. The RCMs do suggest an increase in annual mean precipitation in this region to 2050, but lack significant trend. Glaciers in headwater tributary basins of the Ganges appear to be continuing to decline but it is not clear whether meltwater runoff continues to increase. The predicted changes in precipitation and temperature will probably not lead to significant increase in water availability to 2050, but the timing of runoff from snowmelt will likely occur earlier in spring and summer. Water availability is subject to decadal variability, with much uncertainty in the contribution from climate change.Although global social-economic scenarios show trends to urbanization, locally these trends are less evident and in some districts rural population is increasing. Falling groundwater levels in the Ganges plain may prevent expansion of irrigated areas for food supply. Changes in socio-economic development in combination with projected changes in timing of runoff outside the monsoon period will make difficult choices for water managers.Because of the uncertainty in future water availability trends, decreasing vulnerability by augmenting resilience is the preferred way to adapt to climate change. Adaptive policies are required to increase society's capacity to adapt to both anticipated and unanticipated conditions. Integrated solutions are needed, consistent at various spatial scales, to assure robust and sustainable future use of resources. For water resources this is at the river basin scale. At present adaptation measures in India are planned at national and state level, not taking into account the physical boundaries of water systems. To increase resilience adaptation plans should be made locally specific. However, as it is expected that the partitioning of water over the different sectors and regions will be the biggest constraint, a consistent water use plan at catchment and river basin scale may be the best solution. A policy enabling such river basin planning is essential.  相似文献   

9.
Ozone risk for crops and pastures in present and future climates   总被引:2,自引:0,他引:2  
Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.  相似文献   

10.
Agriculture consumes more than two-thirds of global fresh water out of which 90 % is used by developing countries. Freshwater consumption worldwide is expected to rise another 25 %by 2030 due to increase in population from 6.6 billion currently to about 8 billion by 2030 and over 9 billion by 2050. Worldwide climate change and variability are affecting water resources and agricultural production and in India Ganga Plain region is one of them. Hydroclimatic changes are very prominent in all the regions of Ganga Plain. Climate change and variability impacts are further drying the semi-arid areas and may cause serious problem of water and food scarcity for about 250 million people of the area. About 80 million ha out of total 141 million ha net cultivated area of India is rainfed, which contributes approximately 44 % of total food production has been severely affected by climate change. Further changing climatic conditions are causing prominent hydrological variations like change in drainage density, river morphology (tectonic control) & geometry, water quality and precipitation. Majority of the river channels seen today in the Ganga Plain has migrated from their historic positions. Large scale changes in land use and land cover pattern, cropping pattern, drainage pattern and over exploitation of water resources are modifying the hydrological cycle in Ganga basin. The frequency of floods and drought and its intensity has increased manifold. Ganga Plain rivers has changed their course with time and the regional hydrological conditions shows full control over the rates and processes by which environments geomorphically evolve. Approximately 47 % of total irrigated area of the country is located in Ganga Plain, which is severely affected by changing climatic conditions. In long run climate change will affect the quantity and quality of the crops and the crop yield is going to be down. This will increase the already high food inflation in the country. The warmer atmospheric temperatures and drought conditions will increase soil salinization, desertification and drying-up of aquifer, while flooding conditions will escalate soil erosion, soil degradation and sedimentation. The aim of this study is to understand the impact of different hydrological changes due to climatic conditions and come up with easily and economically feasible solutions effective in addressing the problem of water and food scarcity in future.  相似文献   

11.

Rice (Oriza sativa) feeds nearly half of the world’s population. Regional and national studies in Asia suggest that rice production will suffer under climate change, but researchers conducted few studies for other parts of the world. This research identifies suitable areas for cultivating irrigated rice in Colombia under current climates and for the 2050s, according to the Representative Concentration Pathway (RCP) 8.5 scenario. The methodology uses known locations of the crop, environmental variables, and maximum entropy and probabilistic methods to develop niche-based models for estimating the potential geographic distribution of irrigated rice. Results indicate that future climate change in Colombia could reduce the area that is suitable for rice production by 60%, from 4.4 to 1.8 million hectares. Low-lying rice production regions could be the most susceptible to changing environmental conditions, while mid-altitude valleys could see improvements in rice-growing conditions. In contrast to a country like China where rice production can move to higher latitudes, rice adaptation in tropical Colombia will favor higher elevations. These results suggest adaptation strategies for the Colombian rice sector. Farmers can adopt climate-resilient varieties or change water and agronomic management practices, or both. Other farmers may consider abandoning rice production for some other crop or activity.

  相似文献   

12.
Meeting the growing demand for food in the future will require adaptation of water and land management to future conditions. We studied the extent of different adaptation options to future global change in the Mediterranean region, under scenarios of water use and availability. We focused on the most significant adaptation options for semiarid regions: implementing irrigation, changes to cropland intensity, and diversification of cropland activities. We used Conversion of Land Use on Mondial Scale (CLUMondo), a global land system model, to simulate future change to land use and land cover, and land management. To take into account future global change, we followed global outlooks for future population and climate change, and crop and livestock demand. The results indicate that the level of irrigation efficiency improvement is an important determinant of potential changes in the intensity of rain-fed land systems. No or low irrigation efficiency improvements lead to a reduction in irrigated areas, accompanied with intensification and expansion of rain-fed cropping systems. When reducing water withdrawal, total crop production in intensive rain-fed systems would need to increase significantly: by 130% without improving the irrigation efficiency in irrigated systems and by 53% under conditions of the highest possible efficiency improvement. In all scenarios, traditional Mediterranean multifunctional land systems continue to play a significant role in food production, especially in hosting livestock. Our results indicate that significant improvements to irrigation efficiency with simultaneous increase in cropland productivity are needed to satisfy future demands for food in the region. The approach can be transferred to other similar regions with strong resource limitations in terms of land and water.  相似文献   

13.
Fresh water is one of the most important resources required for human existence, and ensuring its stable supply is a critical issue for sustainable development. The effects of a general set of agriculture and water management adaptations on the size of the world’s water-stressed population were assessed for a specific but consistent scenario on socio-economic development and climate change during the 21st century. To maintain consistency with agricultural land use change, we developed a grid-based water supply–demand model integrated with an agro-land use model and evaluated the water-stressed population using a water withdrawals-to-availability ratio for river basins. Our evaluation shows that, if no adaptation options are implemented, the world’s water-stressed population will increase from 1.8 billion in 2000 to about 3.3 billion in 2050, and then remain fairly constant. The population and economic growth rather than climate change will be dominant factors of this increase. Significant increase in the water-stressed population will occur in regions such as North Africa and the Middle East, India, Other South Asia, China and Southeast Asia. The key adaptation options differ by region, depending on dominant crops, increase in crop demand and so on. For instance, ‘improvement of irrigation efficiency’ and ‘enhancement of reclamation water’ seem to be one of important options to reduce the water stress in Southeast Asia, and North Africa and the Middle East, respectively. The worldwide implementation of adaptation options could decrease the water-stressed population by about 5 % and 7–17 %, relative to the scenario without adaptations, in 2050 and 2100, respectively.  相似文献   

14.
Climate change is one of the main challenges faced by mankind in this century. Although developing countries have little historical responsibility for climate change, they are likely to be most affected by it since they lack resources to cope with or to adapt to its effects. Studies show that the semi-arid northeast region of Brazil – where the country's poorest populations are concentrated – is one of the most vulnerable to climate change and thus likely to suffer its impacts more severely. The present paper addresses these problems by presenting a concrete initiative for strengthening adaptive capacity in the rural community of Pintadas as a first step in the development of a comprehensive methodology to help smallholder farmers in the region adapt to climate change. Based on the project results this paper highlights the integration of development, adaptive capacity and adaptation strategies. Furthermore, the necessity of vulnerability studies and concrete local experiences is highlighted in order to develop adaptation strategies that can alleviate poverty and minimize climate change impacts for the poor.  相似文献   

15.
The winter rainfall zone of North Africa and the Middle East is suffering from acute soil erosion combined with declining livestock production and almost static cereal yields. Experience on projects and commercial farms throughout the region has shown that the annual medicago (Medicago species) pasture system first developed in southern Australia is climatically suited to the region and can be used either in rotation with a cereal crop or in the marginal rainfall areas of the steppe as a permanent pasture.The annual medicago pasture will increase the forage available for livestock and increase the nitrogen in the soil for subsequent cereal crops. The build-up in organic matter and the protection provided by the dense stand of annual medicago will reduce soil erosion to a minimum. The high economic returns achieved relatively quickly provide a strong incentive to farmers and livestock owners to adopt the system. The annual medicago pasture can provide a means of fulfilling production and conservation objectives simultaneously.  相似文献   

16.
The North China Plain (NCP) is one of the most important regions for food production in China, with its agricultural system being significantly affected by the undergoing climate change and vulnerable with water stress. In this study, the Vegetation Interface Processes (VIP) model is used to evaluate crop yield, water consumption (ET), and water use efficiency (WUE) of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double cropping system in the NCP from 1951 to 2006. Their responses to future climate scenarios of 21st century projected by the GCM (HadCM3) with Intergovernmental Panel on Climate Change Special Report on Emission Scenario (IPCC SRES) A2 and B1 emissions are investigated. The results show a rapid enhancement of crop yield in the past 56 years, accompanying with slight increment of ET and noticeable improvement of WUE. There exist spatial patterns of crop yield stemmed mainly from soil quality and irrigation facilities. For climate change impacts, it is found that winter wheat yield will significantly increase with the maximum increment in A2 occurring in 2070s with a value of 19%, whereas the maximum in B1 being 13% in 2060s. Its ET is slightly intensified, which is less than 6%, under both A2 and B1 scenarios, giving rise to the improvement of WUE by 10% and 7% under A2 and B1 scenarios, respectively. Comparatively, summer maize yield will gently decline by 15% for A2 and 12% for B1 scenario, respectively. Its ET is obviously increasing since 2050s with over 10% relative change, leading to a lower WUE with more than 25% relative change under both scenarios in 2090s. Therefore, possible adaptation countermeasures should be developed to mitigate the negative effects of climate change for the sustainable development of agro-ecosystems in the NCP.  相似文献   

17.
Sustainable resource management is the critical agricultural research and development challenge in sub-Saharan Africa. The accumulated knowledge on soil management gathered over the last 10 years, combined with solid crop improvement and plant health research at farmers’ level, has brought us to a stage where we can now address with confidence the intensification of cereal–grain–legume-based cropping systems in the dry savanna of West Africa in a sustainable and environmentally positive manner.Two sustainable farming systems that greatly enhance the productivity and sustainability of integrated livestock systems have been developed and implemented in the dry savanna of Nigeria. These are: (i) maize (Zea mays L.)–promiscuous soybean [Glycine max (L.) Merr.] rotations that combine high nitrogen fixation and the ability to kill large numbers of Striga hermonthica seeds in the soil; and (ii) miflet [Eleusine coracana (L.) Gaerth] and dual-purpose cowpea [Vigna unguiculata (L.) Walp.]. Improvement of the cropping systems in the dry savanna has been driven by the adoption of promiscuously nodulating soybean varieties (in particular TGx 1448-2E) and dual-purpose cowpea. The rate of adoption is very high, even in the absence of an efficient seed distribution system. The number of farmers cultivating the improved varieties increased by 228% during the last 3 years. Increased production of promiscuous soybean has been stimulated by increased demand from industries and home utilization. Production in Nigeria was estimated at 405,000 t in 1999 compared to less than 60,000 t in 1984. Economic analysis of these systems shows already an increase of 50–70% in the gross incomes of adopting farmers compared to those still following the current practices, mainly continuous maize cultivation. Furthermore, increases in legume areas of 10% in Nigeria (about 30,000 ha in the northern Guinea savanna) and increases of 20% in yield have translated into additional fixed nitrogen valued annually at US$ 44 million. This reflects, at the same time, an equivalent increase in land-use productivity, and with further spread of the improved crops, there are excellent prospects for additional economic and environmental benefits from a very large recommendation domain across West Africa.  相似文献   

18.
论文以青藏高原东部大渡河上游农牧交错区为例,采用农户问卷调查方法,在2006和2011年进行的农户和地块调查基础上,分析了研究区种植制度“双改单”现象,并运用多元线性回归模型探究影响种植制度“双改单”变化的因素。研究表明:① 在2006—2011年间,研究区玉米的播种面积保持稳定,小麦的播种面积大幅度下降,土豆的播种面积快速上升,经济作物的播种面积缓慢增加;复种指数明显降低,两熟制作物种植面积下降,一熟制作物种植面积增加,“双改单”现象明显。② 非农收入变化、畜牧业收入变化、地块均面积和区位变量是影响种植制度“双改单”的主要原因。研究种植制度变化并揭示其影响因素,有利于为政府制定有的放矢的粮食生产激励政策提供依据。  相似文献   

19.
The intersection of present vulnerability and the prospect of climate change in Africa warrants proactive action now to reduce the risk of large-scale, adverse impacts. The process of planning adaptive strategies requires a systematic evaluation of priorities and constraints, and the involvement of stakeholders. An overview of climate change in Africa and case studies of impacts for agriculture and water underlie discussion of a typology of adaptive responses that may be most effective for different stakeholders. The most effective strategies are likely to be to reduce present vulnerability and to enhance a broad spectrum of capacity in responding to environmental, resource and economic perturbations. In some cases, such as design of water systems, an added risk factor should be considered.  相似文献   

20.
Future climate change directly impacts crop agriculture by altering temperature and precipitation regimes, crop yields, crop enterprise net returns, and net farm income. Most previous studies assess the potential impacts of agricultural adaptation to climate change on crop yields. This study attempts to evaluate the potential impacts of crop producers’ adaptation to future climate change on crop yield, crop enterprise net returns, and net farm income in Flathead Valley, Montana, USA. Crop enterprises refer to the combinations of inputs (e.g., land, labor, and capital) and field operations used to produce a crop. Two crop enterprise adaptations are evaluated: flexible scheduling of field operations; and crop irrigation. All crop yields are simulated using the Environmental Policy Integrated Climate (EPIC) model. Net farm income is assessed for small and large representative farms and two soils in the study area. Results show that average crop yields in the future period (2006–2050) without adaptation are between 7% and 48% lower than in the historical period (1960–2005). Flexible scheduling of the operations used in crop enterprises does not appear to be an economically efficient form of crop enterprise adaptation because it does not improve crop yields and crop enterprise net returns in the future period. With irrigation, crop yields are generally higher for all crop enterprises and crop enterprise net returns increase for the canola and alfalfa enterprises but decrease for all other assessed crop enterprises relative to no adaptation. Overall, average crop enterprise net return in the future period is 45% lower with than without irrigation. Net farm income decreases for both the large and small representative farms with both flexible scheduling and irrigation. Results indicate that flexible scheduling and irrigation adaptation are unlikely to reduce the potential adverse economic impacts of climate change on crop producers in Montana’s Flathead Valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号