首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromium species (Cr(III), Cr(VI), and Cr(III)-organic) in groundwater of a tannery contaminated area were monitored during pre- and post-monsoon seasons for a period of 3 years (May 2004 to January 2007). The objectives of the study were (1) to investigate the temporal variation of chromium species and other matrix constituents and (2) to study the redox processes associated with the temporal variation of chromium species. Samples were collected from 15 dug wells and analyzed for chromium species and other constituents. The results showed that the groundwater was relatively more oxidizing during post-monsoon periods than the pre-monsoon periods. Except one sample, the concentration of chromium species were found in the order of Cr(VI)>Cr(III)>Cr(III)-organic complexes during all the pre- and post-monsoon periods. In most of the wells, the concentrations of Cr(III), Cr(VI), and Cr(III)-organic decreased during post-monsoon periods compared to their pre-monsoon concentrations. However, the Cr(VI)/CrTotal ratio still increased and the Cr(III)/CrTotal ratio decreased during post-monsoon periods in most of the samples. The possible mechanisms for the temporal variation of chromium species were (1) Fe(II) reduction of Cr(VI) vs oxidation of Fe(II) by dissolved oxygen and (2) oxidation of Cr(III) by Mn(IV).  相似文献   

2.
3.
Probable sources and mechanisms of arsenic (As) release in shallow aquifer in eastern Bangladesh are evaluated using statistical analysis of groundwater compositions. Dissolved As in 39 samples ranged from 8.05 to 341.5 μg/L with an average of 95.14 μg/L. Ninety seven percent of wells exceed the WHO limit (10 μg/L) for safe drinking water. Principal component analysis is applied to reduce 16 measured compositional variables to five significant components (principal components—PCs) that explain 86.63% of the geochemical variance. Two component loadings, namely PC 1 and PC 2 (45.31% and 23.05%) indicate the natural processes within the aquifers in which organic matter is a key reactant in the weathering reactions. Four groups of wells are defined by the PCA and each group of wells represents distinct physicochemical characteristics. Among them, group III groundwater shows higher As concentration together with high concentrations of Fe, Mn, dissolved organic carbon, $\text{PO}_{4}^{3-}$ and $\text{HCO}_{3}^{-}$ than groups I and II. Speciation calculations suggest that only wells of group III are saturated with respect to siderite, and all groups of samples are supersaturated with respect of rhodochrosite. The relationship of As with these parameters in the different groups of wells of the study area suggests that reductive dissolution of Fe–Mn oxyhydroxides with microbially mediated degradation of organic matter is considered to be the dominant processes to release As in groundwater.  相似文献   

4.
Thirty-five alluvial sediments of the River Danube and 12 groundwater samples were taken within the Pan?evo Oil Refinery (Serbia). The results for groundwater samples exceed European primary drinking water standards for Fe (obtained results, >200 μg/l) and Mn (obtained results, >50 μg/l), while the levels of the trace metals are below the thresholds for drinking water quality. Sediments were treated by sequential extraction procedure with five different solutions, each having a higher extraction capacity than the previous one. We also wanted to determine the possible relationships among trace metals and between sediment properties and elemental concentrations. These solutions partitioned metals into CH3COONH4 extractable (F1); HCl carbonate extractable and NH2OH·HCl easily reducible (F2); (NH4)2C2O4/H2C2O4 moderately reducible (F3); H2O2–HNO3 organic/sulfide extractable fractions (F4); and HCl acid-soluble residue (F5). The sum of trace metals Ni, Pb, Cu, and Zn associated with the first two fractions (exchangeable, carbonate, and easily reducible) is significant and extremely important because it represents the proportion of heavy metals that can be easily remobilized by changes in environmental conditions such as pH, redox potential, salinity, etc. Sediments located nearer the groundwater flow are exposed to stronger groundwater fluctuation and had a higher quantity of amorphous and less stable substrates of trace metals. Principal component analysis was used to understand and visualize the associations between the trace metals and certain geological forms within analyzed sediments. The observed association between Cr with total sulfur and Mn from the acid-soluble residue could indicate that Cr is in the form of reduced, less toxic Cr(III), which is from the ecochemical point of view very important.  相似文献   

5.
A novel nanomaterial has been developed for speciation of Cr(III) and Cr(VI) in water and soil samples. In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) modified by the surfactant Triton X-114 has been successfully synthesized and used in magnetic mixed hemimicelles solid-phase extraction procedure. The procedure was based on the reaction of chromium(III) with 1-(2-pyridilazo)-2-naphtol as a ligand, yielding a complex, which was entrapped “in situ” in the surfactant hemimicelles. The concentration of chromium(III) was determined using flame atomic absorption spectrometry. After reduction of Cr(VI) to Cr(III) by ascorbic acid, the system was applied to the total chromium. Cr(VI) was then calculated as the difference between the total Cr and the Cr(III) content. This method can also be used for complicated matrices such as soil samples without any special pretreatment. Under the optimum conditions of parameters, the recoveries of Cr(III) by analyzing the spiked water and soil samples were between 98.6 and 100.8 % and between 96.5 and 100.7 %, respectively. Detection limits of Cr(III) were between 1.4 and 3.6 ng?mL?1 for water samples and 5.6 ng?mg?1 for soil samples.  相似文献   

6.
Forty-eight air-filter samples (PM10) were analysed to identify the concentration level of partially leached metals (PLMs; As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and V) from Puebla City, México. Samples were collected during 2008 from four monitoring sites: (1) Tecnológico (TEC), (2) Ninfas (NIN), (3) Hermanos Serdán (HS) and (4) Agua Santa (AS). The results indicate that in TEC, As (avg. 424 ng m?3), V (avg. 19.2 ng m?3), Fe (avg. 1,202 ng m?3), Cu (avg. 86.6 ng m?3), Cr (41.9 ng m?3) and Ni (18.6 ng m?3) are on the higher side than other populated regions around the world. The enrichment of PLMs is due to the industrial complexes generating huge dust particles involving various operations. The results are supported by the correlation of metals (Mn, Cd and Co) with Fe indicating its anthropogenic origin and likewise, As with Cd, Co, Fe, Mn, Pb and V. The separate cluster of As, Fe and Mn clearly signifies that it is due to continuous eruption of fumaroles from the active volcano Popocatépetl in the region.  相似文献   

7.
A field study was conducted on a small urban watershed (residential and golf course dominated) in southern Nevada to assess the concentration and speciation of selenium (Se) in a series of drain lines and monitoring wells and to quantify the mass discharge of Se from the drain system. Water samples were collected on a monthly basis and analyzed for total Se, selenate (SeO4 =) and selenite (SeO3 =). In addition, where possible, flow was assessed as was, temperature, redox potential, pH, dissolved oxygen (DO) along with all major cations and anions. The data were then modeled with PhreeqC to identify selenium speciation. Results revealed a SeO4 = dominated system with SeO4 = concentrations ranging from 13 to 62 ppb. In the monitoring wells, 66 % of the variation in the total Se concentration could be described based on depth to groundwater, temperature and sulfate concentrations (P?<?0.001). In particular, higher total Se concentrations were predicted for shallower depth to groundwater, suggesting the solubilization of Se evapo-concentrates near the surface could be reduced by lowering water tables. The highest of all correlations was found between SeO4 = concentrations (↑) and the sodium (↑) and DO (↑) concentrations in the monitoring wells (R 2?=?0.77, P?<?0.001). An excellent curvilinear relationship was found between total Se and the electrical conductivity in the water (R 2?=?0.73, P?<?0.001). Based on the Se data and time line identified in this study, high concentrations of Se could be expected to drain from this area for many years to come, with salinity acting as a good proxy for Se concentration. In the drain lines, Se concentrations were found to be invariant to flow (P?>?0.05). Flow discharge from the main drain system to the Las Vegas Wash was estimated at 559 acre feet during the 1 year study period. This flow was estimated to carry 4,203 Mg of salts 6.71 Mg of nitrate-N and 27.1 kg of total Se.  相似文献   

8.
Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO3 ? and low concentrations of NO3 ? and SO4 2? indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50 %) and the competition for adsorption site by anions (PO4 3?) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO4 3?.  相似文献   

9.
Cr(VI) contamination of soil and groundwater is considered a major environmental concern. Bioreduction of Cr(VI) to Cr(III) can be considered a potentially effective technology in remediating Cr(VI) contaminated sites. Shewanella oneidensis MR-1 (MR-1) is one of the bacteria capable of reducing Cr(VI) to Cr(III) under anaerobic conditions. The kinetics of Cr(VI) reduction by MR-1 is defined by the dual-enzyme kinetic model which is nonlinear, transient, and zero-order. Existing transport models are not designed to simulate such reaction kinetics. The objective of this paper is to present a Petrov–Galerkin finite element model (PGFEM) to simulate transport and bioreduction of Cr(VI), by MR-1, in groundwater. The model developed is unconditionally stable and provides oscillation free accurate results for a wide range of Peclet number (Pn) and Courant number (Cn).  相似文献   

10.
Nascent Amberlite XAD-4 has been used as the polymeric support for the synthesis of a stable extractor of metal ions, by incorporating phthalic acid through azo bridging. Elemental analyses and infra-red spectral and thermal studies were carried out for its characterization. The water regain value and hydrogen ion capacity were found to be 12.50 and 5.75 mmol g?1, respectively. The optimum pH range for the maximum sorption of Ni(II), Mn(II), Cu(II), Zn(II), Cd(II), Cr(III), and Co(II) was observed at pH 5.5–8.0 with the corresponding half-loading time (t 1/2) of 9, 5, 9, 9, 3, 9, and 5 min, respectively. The preconcentration factor for Ni(II), Mn(II), Cu(II), Zn(II), Cd(II), Cr(III), and Co(II) are 190, 190, 190, 180, 180, 160, and 160, with the corresponding limit of preconcentration in the range of 5.25–6.25 μg L?1. The detection limits, for flame atomic absorption spectrophotometry, were found to be 0.62, 0.60, 0.65, 0.75, 0.72, 0.84, and 0.85 μg L?1, respectively. Method has been successfully applied to the analysis of water samples, multivitamin formulations, infant food substitutes, hydrogenated oil, and fishes.  相似文献   

11.
A new four-step hierarchy method was constructed and applied to evaluate the groundwater quality and pollution of the Dagujia River Basin. The assessment index system is divided into four types: field test indices, common inorganic chemical indices, inorganic toxicology indices, and trace organic indices. Background values of common inorganic chemical indices and inorganic toxicology indices were estimated with the cumulative-probability curve method, and the results showed that the background values of Mg2+ (51.1 mg L?1), total hardness (TH) (509.4 mg L?1), and NO3 ? (182.4 mg L?1) are all higher than the corresponding grade III values of Quality Standard for Groundwater, indicating that they were poor indicators and therefore were not included in the groundwater quality assessment. The quality assessment results displayed that the field test indices were mainly classified as grade II, accounting for 60.87% of wells sampled. The indices of common inorganic chemical and inorganic toxicology were both mostly in the range of grade III, whereas the trace organic indices were predominantly classified as grade I. The variabilities and excess ratios of the indices were also calculated and evaluated. Spatial distributions showed that the groundwater with poor quality indices was mainly located in the northeast of the basin, which was well-connected with seawater intrusion. Additionally, the pollution assessment revealed that groundwater in well 44 was classified as “moderately polluted,” wells 5 and 8 were “lightly polluted,” and other wells were classified as “unpolluted.”  相似文献   

12.
Hexavalent chromium (Cr(VI)) is an acknowledged hazardous material in drinking waters. As such, effective monitoring and assessment of the risks posed by Cr(VI) are important analytical objectives for both human health and environmental science. However, because of the lack of highly sensitive, rapid, and simple procedures, a relatively limited number of studies have been carried out in this field. Here we report a simple and sensitive analytical procedure of flow injection analysis (FIA) for sub-nanomolar Cr(VI) in drinking water samples with a liquid core waveguide capillary cell (LWCC). The procedure is based on a highly selective reaction between 1, 5-diphenylcarbazide and Cr(VI) under acidic conditions. The optimized experimental parameters included reagent concentrations, injection volume, length of mixing coil, and flow rate. Measurements at 540 nm, and a 650-nm reference wavelength, produced a 0.12-nM detection limit. Relative standard deviations for 1, 2, and 10 nM samples were 5.6, 3.6, and 0.72 % (n?=?9), and the analysis time was <2 min sample?1. The effects of salinity and interfering ions, especially Fe(III), were evaluated. Using the FIA-LWCC method, different sources of bottled waters and tap waters were examined. The Cr(VI) concentrations of the bottled waters ranged from the detection limit to ~20 nM, and tap waters collected from the same community supply had Cr(VI) concentration around 14 nM.  相似文献   

13.
Geochemical study of groundwater from a structurally deformed granitic terrain near Hyderabad (India) was carried out to understand and evaluate the hydrogeochemical processes and quality of groundwater. Several trace elements (Fe, Mn, Be, Al, V, Cr, Co, Ni, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, Pb, U) along with major ions and minor elements were precisely estimated in shallow and drilled wells to know the suitability of water for drinking and irrigation purposes. Analytical data shows that pH and major ion chemistry in dug wells and bore wells do not vary significantly, while some trace elements (Fe, Mn, Al, Be, Co, Pb, U and Zn) vary in dug wells and bore wells, which can be attributed to differential mineral weathering and dissolution/precipitation reactions along fractures/joints. Although the water is not potable, it was found to be suitable for irrigation with little danger in the development of harmful level of exchangeable sodium. It is inferred that the chemical composition of the groundwater in this region is likely to have its origin from silicate weathering reactions and dissolution/precipitation processes supported by rainfall and groundwater flow.  相似文献   

14.
Metal release from serpentine soils in Sri Lanka   总被引:2,自引:0,他引:2  
Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify “elemental pools,” indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168?±?6.40 mg kg?1 via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg?1 (Yudhaganawa) in the organic fraction and 49 mg kg?1 (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg?1 in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.  相似文献   

15.
An attempt has been made in this study to evaluate the groundwater quality in two industrial blocks of Ghaziabad district. Groundwater samples were collected from shallow wells, deep wells and hand pumps of two heavily industrialized blocks, namely Bulandshahar road industrial area and Meerut road industrial area in Ghaziabad district for assessing their suitability for various uses. Samples were collected from 30 sites in each block before and after monsoon. They were analyzed for a total of 23 elements, namely, Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, U, V, and Zn. In addition to these elements, some other parameters were also studied viz: color, odor, turbidity, biological oxygen demand, chemical oxygen demand (COD), dissolved oxygen, total dissolved solids and total suspended solid. The water quality index was also calculated based on some of the parameters estimated. Out of the 23 elements, the mean values of 12 elements, namely, Al, As, Ca, Cd, Cr, Mg, Mn, Na, Ni, Pb, Se, and U, were higher than the prescribed standard limits. The concentrations (in milligram per liter) of highly toxic metals viz., Al, As, Cd, Cr, Ni, Pb, Se, and U, ranged from 1.33–6.30, 0.04–0.54, 0.005–0.013, 4.51–7.09, 0.14–0.27, 0.13–0.32, 0.16–2.11, and 0.10–1.21, respectively, in all groundwater samples, while the permissible limits of these elements as per WHO/BIS standards for drinking are 0.2, 0.01, 0.003, 0.05, 0.07, 0.01, 0.04, and 0.03 mg L?1, respectively. The EC, pH, and COD in all samples varied from 0.74–4.21, 6.05–7.72, and 4.5–20.0 while their permissible limits are 0.7 dS m?1, 6.5–8.5, and 10 mg L?1, respectively. On the basis of the above-mentioned parameters, the water quality index of all groundwater samples ranged from 101 to 491, and 871 to 2904 with mean value of 265 and 1,174 based on two criteria, i.e., physico-chemical and metal contaminations, respectively while the prescribed safe limit for drinking is below 50. The results revealed that the groundwater in the two blocks is unfit for drinking as per WHO/BIS guidelines. The presence of elements like As, Se, and U in toxic amounts is a matter of serious concern.  相似文献   

16.
The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O2, NO3?, Mn, Fe, SO42?, HCO3?), δ13C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ13C values of DIC ranged from ??15.83 to ??2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes—the activity of biodegradation mechanisms in field conditions.  相似文献   

17.
This paper presents the chemical speciation and retention behavior of chromium (Cr), nickel (Ni), and cadmium (Cd) prior to and after the electrokinetic remediation in glacial till soil. The speciation of the metals was predicted using the chemical speciation program MINEQL+. The simulations were performed for single-contaminant with only Cr(VI) or Ni, and multi-contaminants consisting of: (1) Cr(VI), Ni, and Cd; (2) Cr(III), Ni and Cd; (3) Cr(VI), Cr(III), Ni and Cd; (4) Cr(VI), Ni, and Cd with reducing agents; and (5) Cr(III), Ni, and Cd with oxidizing agent (Mn). The results showed that the speciation and distribution of cationic metals [Ni, Cd, and Cr(III)] in glacial till soil remain unaffected or slightly affected during electrokinetics. This is attributed to the high pH buffering capacity of the glacial till, leading the metals to precipitate in the soil prior to and after electrokinetics. This study showed that during electrokinetics, Cr(VI) existed as anionic complex and migrated towards the anode and the migration is maximum in case of a single-contaminant system. The study also showed that near the anode in the absence of any reducing and oxidizing agent, Cr(VI) mostly adsorbed, and some of Cr(VI) reduced to Cr(III) and migrated towards the cathode and finally precipitated due to high pH conditions. Ni and Cd remain adsorbed or precipitated due to the high pH conditions throughout the soil. Among the reducing agents, the sulfide had significant effect on the migration of metals compared to ferrous ions. While in the presence of oxidizing agent (Mn), no noticeable Cr(VI) was found in the soil sample indicating the reduction of Cr(VI) to Cr(III) and the predominance of reducing conditions due to the presence of naturally occurring iron in the glacial till soil. Overall, this study provides a reasonable explanation of the speciation and distribution of chromium, nickel and cadmium during the electrokinetic remediation of glacial till soil.  相似文献   

18.
Cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) were analyzed in the breast feather of white-fronted geese (Anser albifrons, n?=?15), mallards (Anas platyrhynchos, n?=?4), and spot-billed ducks (Anas poecilorhyncha, n?=?13) found dead in Gimpo, Korea. All of the mallards and eight of the 13 spot-billed ducks had embedded shot. Concentrations of Pb, Cr, Cu, Mn, Zn, and Fe were significantly different among waterfowl species. Mallards with embedded shot had relatively higher Pb, Cr, Mn, and Fe concentrations than the other species. Cd and Cr in feathers of waterfowl species were within the range reported for other birds, and no specimen exceeded the tentative threshold effect levels of Cd (2 μg/g dry weight (dw)) and Cr (2.8 μg/g dw) for birds. However, Pb in feathers of all four mallards and two spot-billed ducks exceeded the threshold for deleterious effects (>4 μg/g dw). Essential elements such as Cu, Mn, Zn, and Fe in the feather of waterfowl species were not at toxic levels and within the background or normal range for the homeostatic mechanisms.  相似文献   

19.
This study reports the quantification of the toxicity of particulate matter (PM)-bound metals and their possible associated risks to human health. For assessment of PM, 24-h samples of PM10 and PM2.5 were collected by Mini Vol-TAS sampler at an urban site of Pune. Samples were sequentially extracted with ultrapure water and concentrated HNO3 and analyzed for “soluble” and “total” metals. Factor analysis identified the resuspension of road dust due to traffic, biomass burning, construction activities, and wind-blown dust as possible sources that played an important role for overall pollution throughout the year. Water-soluble proportion was found to be ≤20 % for Cr, Co, Fe, and Al; ≥50 % for Sr, Cd, Ca, and Zn; and a substantial proportion (~25–45 %) for Mn, Ba, K, Na, Ni, Mg, Cu, and Pb metals in PM10. For PM2.5, the water-soluble proportion was ≤20 % for Fe, Co, Ni, Cr, and Al, while Sr, K, and Cd were mostly soluble (>50 %) and Cu, Ba, Mn, Ca, Zn, Pb, Na, and Mg were substantially soluble (~25–45 %). In the present study, among the toxic metals, Cd and Pb show higher concentration in the soluble fraction and thus represent the higher bioavailability index and especially are harmful to the environment and exposed person. Risk calculations with a simple exposure assessment method showed that the cancer risks of the bioavailable fractions of Cr, Cd and Ni were greater than the standard goal.  相似文献   

20.
Levels of selected metals Na, Ca, Mg, K, Fe, Mn, Cr, Co, Ni, Cd, Pb and Mn were estimated by flame atomic absorption spectrophotometry in groundwater samples from Kasur, a significant industrial city of Pakistan. Salient mean concentration levels were recorded for: Na (211 mg/l), Ca (187 mg/l), Mg (122 mg/l), K (87.7 mg/l), Fe (2.57 mg/l) and Cr (2.12 mg/l). Overall, the decreasing metal concentration order was: Na > Ca > Mg > K > Fe > Cr > Zn > Co > Pb > Mn > Ni > Cd. Significantly positive correlations were found between Na–Cr (r = 0.553), Na–Mn (r = 0.543), Mg–Fe (r = 0.519), Mg–Cr (r = 0.535), Pb–K (r = 0.506) and Pb–Ni (r = 0.611). Principal Component Analysis and Cluster Analysis identified tannery effluents as the main source of metal contamination of the groundwater. The present metal data showed that Cr, Pb and Fe levels were several times higher than those recommended for water quality by WHO, US-EPA, EU and Japan. The elevated levels of Cr, recorded as 21–42 fold higher compared with the recommended quality values, were believed to originate from the tanning industry of Kasur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号