首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以上海2家大型修造船企业、3家大型汽车制造企业、2家大型涂料生产企业、1家大型油墨生产企业以及1家大型包装印刷企业为例,研究不同监测方法对溶剂使用源有组织排放废气VOCs(挥发性有机物)监测的适用性;并在此基础上初步探讨溶剂使用源排放VOCs的组成特征.结果表明:Summa罐可以很好地采集和储存溶剂使用源排放的有机物,废气在Summa罐采集、储存1周后,其中NMHC(非甲烷总烃)质量浓度与企业现场测试结果一致性很好,二者相关系数高达0.99,平均比值为1.04±0.09.采用GC-FID/MS(气相色谱-氢离子火焰/质谱)联用技术分析Summa罐采集的废气发现,VOCs可定量组分的质量浓度平均值占ρ(NMHC)的61.0%(以碳计);不同溶剂使用源排放的NMHC中可定量组分所占比例在29.2%~95.7%之间,行业之间存在一定差异.溶剂使用源排放的废气中可定量的VOCs组分主要是芳香烃和含氧VOCs;修造船和汽车制造等喷涂过程排放的VOCs中芳香烃贡献最大,其次是含氧VOCs;在涂料油墨生产及包装印刷过程排放的VOCs中,含氧VOCs贡献最大,特别是包装印刷源排放的VOCs中有85.0%是乙酸乙酯.研究结果对溶剂使用源VOCs物质排放清单编制有一定的支撑作用.   相似文献   

2.
四川省典型行业挥发性有机物源成分谱   总被引:3,自引:3,他引:0  
徐晨曦  陈军辉  韩丽  王继钦  王波 《环境科学》2020,41(7):3031-3041
本研究选取了四川省汽车制造、木制家具、人造板制造、涂料生产和合成树脂生产等挥发性有机物(VOCs)排放源典型行业,通过GC-MS国标方法分析各环节有组织排放的VOCs组分,采用排放总量归一化法处理,获取了四川省汽车制造等典型行业挥发性有机物的成分谱.结果表明,汽车整车制造、木制家具和油性涂料生产企业的VOCs主要组分为芳香烃和含氧化合物,占总VOCs的70%以上,汽车零部件制造企业排放物种主要为芳香烃,其占比达90%以上.人造板制造业含氧化合物占比达97%,其中甲醛占比为75%,其次为异丙醇、丙酮等物质.合成树脂行业芳香烃、烯烃占比较高,占比之和达80%以上,其中烯烃物种主要为1,3-丁二烯和1-丁烯.不同行业排放物种虽存在一定差异,但主要以芳香烃和含氧化合物为主,因此,应加强对芳香烃和含氧化合物等浓度高、活性高、毒性大的组分进行识别和控制,采取源头、过程和末端全过程控制,达到总量减排的效果.  相似文献   

3.
南京工业区秋季大气挥发性有机物污染特征及来源解析   总被引:19,自引:19,他引:0  
曹梦瑶  林煜棋  章炎麟 《环境科学》2020,41(6):2565-2576
2018年秋季在南京利用大气挥发性有机物(volatile organic compounds, VOCs)吸附浓缩在线监测系统(AC-GCMS 1000)对大气VOCs进行连续观测,以了解其化学特征、臭氧生成潜势和污染来源.结果表明,南京秋季大气VOCs体积分数为(64.3±45.6)×10~(-9),以烷烃(33.1%)、含氧挥发性有机物(OVOCs)(22.3%)及卤代烃(21.8%)为主.VOCs的昼夜变化呈"双峰型"变化特征,高值主要出现在清晨的06:00~07:00及夜间的18:00~20:00,主要受机动车排放及气象要素的共同影响.秋季南京VOCs的臭氧生成潜势(ozone formation potential, OFP)为267.1μg·m~(-3),主要贡献物种是芳香烃类化合物(55.2%)和烯烃类化合物(20.8%).PMF受体模型源解析确定5个VOCs来源,分别是交通排放(34%)、工业排放(19%)、LPG排放(17%)、涂料及有机溶剂挥发(16%)以及生物质燃烧和燃煤排放(14%),因此控制南京工业区秋季大气污染应主要着力于交通及工业排放的治理.  相似文献   

4.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

5.
北京市典型溶剂使用企业VOCs排放成分特征   总被引:25,自引:0,他引:25  
通过罐采样-GC-MS/FID采集及分析系统,测定了北京市工业区内典型溶剂使用企业挥发性有机物(VOCs)的排放成分.结果表明:在汽车喷涂企业中,芳香烃(22%~55%)和烷烃(13%~44%)是重要的VOCs排放组分,印刷企业排放的主要组分为烷烃(43%~71%)和含氧VOCs(17%~19%),电子光刻企业排放的特征组分是丙酮(10%~18%),但不同电子光刻企业VOCs其它组分比例相差较大;企业中采用的VOCs处理装置对VOCs排放组成有重要影响;与已有研究的源谱比较,印刷行业源谱较相似,主要以烷烃为主,也有部分芳香烃.汽车喷涂行业的源谱有很大变化,可能是由于汽车涂料成分改变而造成.  相似文献   

6.
北京市典型溶剂使用行业VOCs成分谱   总被引:16,自引:11,他引:5  
方莉  刘文文  陈丹妮  李国昊  王迪  邵霞  聂磊 《环境科学》2019,40(10):4395-4403
基于北京市挥发性有机物(VOCs)排放清单和下一阶段VOCs减排的需求,针对汽车整车制造、木质家具制造和出版物印刷这3个主要溶剂使用行业,分别选取典型企业作为研究对象,采用负压法对重点排放环节进行采样,以GC-MS/FID系统测定样品中VOCs组分构成,从而获取了北京市典型溶剂使用行业VOCs成分谱.结果表明,汽车整车制造主要排放环节排放的VOCs组分存在明显差异,色漆涂装工序以含氧VOCs和芳香烃为主,分别占比71. 26%和27. 14%,罩光工序芳香烃达到84. 10%;木质家具制造业不同排放环节的VOCs组分差异不大,均以含氧VOCs和芳香烃为主,分别占55. 08%和18. 98%;出版物印刷业不同排放环节无法单独监测,其混合废气VOCs组分以烷烃和含氧VOCs为主,分别占比47. 29%和44. 57%.  相似文献   

7.
为研究石化行业VOCs的排放特征及其环境影响,选取山东省3家典型地方炼化企业开展样品采集和物种分析,并利用MIR(最大增量反应活性)法和SOAP(二次有机气溶胶生成潜势)法量化其对二次污染生成的贡献.结果表明,不同生产类型企业VOCs排放组成差异较大.从体积浓度来看,企业A各采样点位以芳香烃(30.4%~92.2%)为主要排放化合物;企业B排放以烷烃(15.4%~53.8%)、烯炔烃(11.4%~71.7%)和含氧VOCs(0.1%~53.8%)为主;企业C则主要排放烷烃(6.1%~95.3%)和烯炔烃(1.2%~93.1%).从合成源谱来看,企业A以芳香烃为主要化合物,乙苯、苯、苯乙烯、甲苯为高排放物种;企业B中烷烃、烯炔烃和含氧VOCs均有较高占比,1-丁烯、甲基乙基酮、反-2-丁烯、异丁烷、甲苯为主要物种;企业C则主要排放烷烃类化合物,包括异丁烷、丙烷、环戊烷.OFP(臭氧生成潜势)评估结果表明,芳香烃化合物包括乙苯、苯乙烯、苯和甲苯,其对企业A的贡献最大;企业B中,烯炔烃化合物包括1-丁烯、反-2-丁烯、异戊二烯,其OFP占比最高;企业C则以烯炔烃和烷烃为高贡献化合物,其中丙烯、异丁烷、间/对-二甲苯、顺-2-丁烯为关键活性物种.SOAP评估结果表明,各企业SOA(二次有机气溶胶)的生成均由芳香烃主导,关键活性物种为甲苯、苯乙烯、苯、间/对-二甲苯.研究显示,地方炼化企业所排的VOCs组分复杂且存在显著的工艺差异,应根据筛选出的关键活性组分制定针对性的VOCs减排策略.   相似文献   

8.
餐饮油烟中挥发性有机物风险评估   总被引:15,自引:4,他引:11       下载免费PDF全文
餐饮油烟中的挥发性有机物(VOCs)通过参与大气化学反应、气味效应、毒性效应影响室内外环境及人体健康. 分别于冬夏两季(6月和12月)用餐高峰时段对天津某中型餐馆排放油烟中VOCs进行实地监测,通过气相色谱-质谱联用仪(GC-MS)分析得出厨房油烟VOCs中主要污染物为乙醇和丙烷;餐馆油烟去除效率不足30%,对环境影响显著;醛类是影响油烟排放源臭气指数的主要污染物,油烟平均嗅阈值与丁醛嗅阈值相当;厨房排放油烟中含氧有机物和烯烃是其光化学活性的主要贡献者,油烟单位数浓度活性为3.8×10-12,与正己烷相当;厨房油烟中1,3-丁二烯、苯的致癌风险分别为1.3×10-3和1.6×10-5,存在较大的人群潜在致癌风险.   相似文献   

9.
为研究成都市城区大气VOCs季节变化特征,本研究在2018年12月至2019年11月对VOCs组分进行监测,并对VOCs的浓度水平、各化学组成、化学反应活性和来源进行分析.结果表明,成都市城区春、夏、秋和冬季VOCs的平均体积分数分别为32.29×10~(-9)、 36.25×10~(-9)、 40.92×10~(-9)和49.48×10~(-9),冬季的浓度明显高于其他季节,春季和夏季的浓度水平相差不大,各季节VOCs的组分浓度水平有所差异,冬季烷烃占总VOCs的比例最大,可能受机动车排放的影响较明显;夏季和秋季含氧(氮)挥发性有机物占比远高于春、冬季,一次源的挥发排放和二次转化的生成贡献较大;成都市城区不同季节大气中VOCs平均浓度排名靠前的关键组分基本无变化,主要是C_2~C_4的烷烃、乙烯、乙炔及二氯甲烷等,可能受机动车尾气、油气挥发、溶剂使用和LPG燃料等影响明显,夏季丙酮以及乙酸乙酯等含氧有机物浓度贡献突出;根据·OH消耗速率和OFP计算可知关键活性物种主要为间/对-二甲苯、乙烯、丙烯、1-己烯、甲苯、异戊烷和正丁烷等,这些物种应该优先减排和控制;四季VOCs源解析结果显示:春、夏季温度较秋、冬季高,光照更强,PMF明显解析出天然源和二次排放贡献,同时,由于夏季温度较高,解析出油气挥发占9%;秋、冬季占比增加的源主要为机动车尾气和燃烧源,燃烧源的排放占比在25%左右,另餐饮源的排放占比在9%左右.  相似文献   

10.
在2018年9月14~23日选取了典型光化学污染期间,在长三角重点城市杭州市城区开展大气中挥发性有机物(VOCs)的加密观测.对80个有效样品分析结果表明,观测期间大气VOCs的122种化合物平均体积分数为(59.5±19.8)×10~(-9),含氧化合物(OVOC)是其中最主要的组分.用臭氧生成潜势(OFP)评估大气反应活性结果表明,观测期间OFP平均值为145×10~(-9),其中贡献最大的是芳烃和醛酮化合物.其大气VOCs整体活性水平与丙烯腈相当.运用正交矩阵因子(PMF)模型对VOCs进行源解析后,识别出杭州市大气VOCs的5个主要污染源,分别为二次生成(25.2%)、燃烧及工艺过程(27.2%)、溶剂使用(17.3%)、天然源(9.2%)和机动车排放(21.2%).本研究结果可为深入掌握杭州市VOCs污染特征以及科学制定防控措施提供技术支撑.  相似文献   

11.
南京市北郊夏季挥发性有机物的源解析   总被引:20,自引:15,他引:5  
杨辉  朱彬  高晋徽  李用宇  夏丽 《环境科学》2013,34(12):4519-4528
2012年8月利用在线气相色谱仪对南京市北郊大气环境中的挥发性有机物(VOCs)进行连续监测,分析VOCs时间变化规律,并利用PMF(positive matrix factorization)受体模型和CPF(conditional probability function)方法对其来源进行解析.结果表明,南京市北郊夏季VOCs日变化呈双峰分布,小时平均体积分数为(33.84±27.77)×10-9,夜间高于昼间.其中含量最高的是烷烃,其次是烯烃和芳烃,分别占到总挥发性有机物(TVOCs)的49.3%、24.4%和18.5%,乙炔占7.8%.南京市北郊夏季VOCs主要来源有5个,分别是交通尾气、燃料挥发、工业排放、有机溶剂挥发和植物排放源,各自对TVOCs贡献为33.1%、25.8%、23.2%、8.1%和9.7%.烷烃主要来源于汽车尾气排放、工业排放和燃料挥发,贡献百分比分别为23.7%、35.3%和31.3%;烯烃主要来源于燃料挥发、工业排放和汽车尾气排放,分别占41.1%、18.4%和24.3%;对芳烃贡献最大的为汽车尾气排放,占到49.2%,其次是有机溶剂挥发排放占30.8%.  相似文献   

12.
长三角区域人为源活性挥发性有机物高分辨率排放清单   总被引:1,自引:1,他引:0  
基于长三角区域41个城市本地实测,结合美国EPA的SPECIATE 4.4数据库,建立了长三角区域人为源活性挥发性有机物(VOCs)高分辨率排放清单,分析了区域内VOCs的排放特征和组分构成;计算了VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP).结果表明,2017年,长三角区域人为源VOCs排放总量为4.9×106 t,其中工艺过程源、工业溶剂使用源、移动源、生活源、储运源、农业源和废弃物处理源排放贡献分别为:34.3%、27.1%、19.5%、9.7%、6.1%、2.5%和0.4%.芳香烃和烷烃是VOCs的主要种类,均各占长三角VOCs排放总量的25%.工艺过程源、工业溶剂使用源、移动源和生活源OFP贡献率分别为38.3%、21.5%、16.4%和13.2%,SOAP贡献率分别为26.2%、34.1%、18.1%和17.9%,与VOCs排放量的主要贡献源基本一致.各城市VOCs重点排放行业存在较大差异,重点城市群以石化化工和装备制造为主,区域北部则以木材家具等涂装行业为主.计算表明,丙烯、间/对-二甲苯和乙烯是臭氧主要贡献源;甲苯、1,2,...  相似文献   

13.
聚焦某石化企业芳烃、烯烃及炼油生产区域,针对芳烃连续重整、芳烃制氢、烯烃催化裂解和炼油常减压蒸馏4套活性VOCs组分较多的生产装置,开展了装置VOCs排放特征研究。使用苏玛罐对装置无组织逸散环节VOCs废气进行采集,并通过气相色谱-质谱联用仪(GC-MS)对106种VOCs组分进行定性定量分析,采用VOCs最大增量反应活性(MIR)来计算各装置VOCs排放对大气中O3生成的贡献。结果表明:烷烃是4套装置的VOCs特征组分,质量分数为42.17%~93.57%。烯烃裂解装置卤代烃质量分数为30.08%,常减压蒸馏装置芳香烃质量分数为27.83%;丙烷、乙烷、1,2-二氯乙烷和正庚烷是石化行业企业VOCs排放特征物种;4套装置臭氧生成贡献OFP为0.49~30.05 mg/m3,其顺序为炼油常减压蒸馏装置(30.05 mg/m3)>芳烃制氢装置(4.21 mg/m3)>芳烃连续重整装置(2.57 mg/m3)>烯烃裂解装置(0.49 mg/m3  相似文献   

14.
《环境科学与技术》2021,44(1):190-197
文章在岳阳市一个国家空气质量监测站附近,采用罐采样方法采集一次O_3污染过程期间环境全空气样品,利用预浓缩-GC/FID/ECD/MSD技术分析106种VOCs,共检出77种VOCs,研究其组成与来源。结果表明:岳阳市秋季大气TVOCs体积分数为(44.91±15.52)×10~(-9),以烷烃(19.9%~53.0%)、含氧挥发性有机物(OVOCs)(15.7%~55.9%)为主,优势物种为C2~C5烷烯烃、OVOCs、苯系物及卤代烃。秋季VOCs丙烯等效浓度范围为60.46×10~(-9)~230.04×10~(-9);臭氧生成潜势范围为76.37~394.30μg/m~3;反应活性较高的物种为异戊烷、间/对-二甲苯和甲苯及丙烯、乙烯,根据反应活性物种初步判断岳阳市VOCs主要来源为机动车尾气排放及本地石油化工企业排放。特征比值溯源发现秋季异戊烷/正戊烷体积浓度比值为2.6,受机动车排放源影响更大。甲苯和苯、邻二甲苯和苯及间/对-二甲苯和苯体积浓度比值平均值分别为0.05、0.01和0.07,主要来源于生物质、生质燃料、煤燃烧源。邻二甲苯和乙苯、间/对-二甲苯和乙苯体积比值均值分别为0.80和2.71,受溶剂排放影响较大。控制岳阳市秋季O_3污染应着力于交通排放、LPG燃烧排放源、生物质燃烧源、石油化工及溶剂挥发排放的治理。  相似文献   

15.
邯郸市秋季大气挥发性有机物污染特征   总被引:12,自引:1,他引:11       下载免费PDF全文
大气中VOCs(volatile organic compounds,挥发性有机物)是形成O3和二次有机气溶胶的重要前体物.通过对2017年10月1-31日邯郸市秋季环境空气中56种VOCs污染物进行在线监测,结合PM2.5、O3、NOx等污染物质量浓度和气象数据,分析了邯郸市VOCs质量浓度水平、时间变化特征、化学反应活性和主要来源.结果表明:邯郸市ρ(VOCs)变化范围较大,为49.1~358.4 μg/m3,平均值为(102.2±45.8)μg/m3,VOCs的主要组分为烷烃和芳烃.ρ(VOCs)与ρ(PM2.5)、ρ(NOx)均有很强的相关性,相关系数分别为0.8和0.7;而ρ(NOx)与ρ(O3)呈明显的负相关性,相关系数为-0.7.邯郸市VOCs中各类组分化学反应活性大小依次为烯烃>芳烃>烷烃>炔烃,并且国庆期间(10月1-7日)VOCs化学反应活性小于非国庆期间(10月8-31日),烯烃和芳烃对O3的产生占主导地位.应用主因子分析法对邯郸市VOCs来源进行解析发现,溶剂使用和燃料挥发源、汽油车排放源、工业源、柴油车排放源和燃烧源是VOCs的主要来源,其方差贡献率分别为36.7%、15.5%、8.0%、6.6%、5.1%.研究显示,减少邯郸市大气中ρ(VOCs)应以控制溶剂使用和燃料挥发源、交通排放源(汽油车排放源和柴油车排放源)为主.   相似文献   

16.
石化行业是挥发性有机物(VOCs)的重要来源之一,然而,当前石化行业VOCs研究多集中于炼油厂VOCs排放特征分析,针对有机化工和合成材料等子行业的研究较为缺乏.选取珠三角地区某石化园区中石油炼制、合成材料和有机化工3个主要行业的8家代表性企业和园区周围敏感点为研究对象,采集分析了包含22种含氧VOCs(OVOCs)在...  相似文献   

17.
为了解邢台市不同行业企业挥发性有机物(VOCs)污染特征,通过Summa罐采集样品,采用预浓缩-气质联用仪系统(GC-MS/FID)进行测定分析,探究不同行业VOCs特征组分变化,并分析了VOCs排放对OFP(臭氧生成潜势)贡献影响.结果表明:①光伏元件制造、木材深加工及印刷行业排放的VOCs中以OVOCs(含氧挥发性有机物)为主,其占比在52.7%以上,特征物种为异丙醇、丙酮及乙酸乙酯等;玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中以芳香烃为主,占比为36.7%~93.8%,特征物种为间/对-二甲苯、邻-二甲苯和对-二乙基苯等.②玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中对OFP贡献较大组分为芳香烃,占比为88.3%~98.2%,活性物种为间/对-二甲苯、甲苯及邻-二甲苯等C7~C9的苯系物;光伏元件制造和印刷行业排放的VOCs中对OFP贡献较大的组分为OVOCs,占比为92.8%~95.2%,活性物种为异丙醇、乙酸乙酯及甲基乙基酮等;木材深加工行业排放的VOCs中对OFP贡献较大的组分为OVOCs和烯烃,占比分别为39.0%~53.4%和23.0%~25.3%,活性物种主要为丙酮、甲基乙基酮及1-丁烯等.研究显示,邢台市玻璃深加工和汽车表面喷涂企业中芳香烃对OFP影响较大,其次是印刷企业,亟需优先加强管控.   相似文献   

18.
为研究近年来我国重点区域(京津冀及周边地区、长三角地区、珠三角地区、成渝地区及汾渭平原)臭氧局地化学生成的控制因素,利用2014-2019年这些区域共8个代表性站点的夏秋季臭氧及前体物浓度数据,比较分析五大重点区域8个站点的挥发性有机物(VOCs)组成特征及其与臭氧化学生成之间关系.结果表明:(1)这5个重点区域的VOCs浓度主要由烷烃组成,而活性组分则以烯烃、含氧VOCs和芳香烃为主.(2)以泰安和成都作为郊区和城市站点的案例研究表明,环境条件发生变化(平均温度增加2℃、辐射增加20%或天然源排放增加20%)可能对当地臭氧生成量产生一定影响,但它们并不足以改变对臭氧生成控制区的判定.(3)通过采用VOCs来源解析技术和相对增量反应活性的方法,发现机动车尾气、工业和溶剂使用等人为源类别是影响局地臭氧化学生成的关键VOCs排放源,而在农村或郊区(如望都、泰安等站点),天然源VOCs对臭氧生成贡献很大.研究显示,实现降低各城市臭氧峰值浓度,则需要制定并实施差异化的前体物减排策略,以便根据每个城市的VOCs排放特征及其对当地臭氧生成的影响来进行有效控制;同时认为,重点控制人为源VOCs是有效...  相似文献   

19.
铸造行业挥发性有机物排放成分谱及影响   总被引:1,自引:1,他引:0  
采用气袋-吸附管采样方法对京津冀地区9家铸造企业重点工序有组织和无组织排放气体进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了56种VOCs组分,首次建立了铸造行业基于生产工序的VOCs源成分谱,并且结合臭氧生成潜势分析了VOCs对臭氧生成的贡献.结果表明,铸造行业VOCs特征组分主要为芳烃、卤代烃和含氧VOCs,平均占比分别为:50.9%、20.8%和12.6%.总体而言,甲苯、苯、间/对-二甲苯等芳烃,二氯甲烷、三氯乙烯等卤代烃,丙酮、乙酸乙酯、环戊酮等含氧VOCs和部分高碳烷烃是铸造行业的特征物种.铸造企业不同生产工序的VOCs特征物种与所使用溶剂、表面处理剂的成分相关.喷漆工序是铸造行业中排放浓度最高的环节,其次为造型、硅溶胶和浇注工序.不同生产工序排放VOCs的OFP在0.29~96.09 mg·m-3之间.喷漆工序是铸造行业OFP最高的环节,其次是造型、熔炼和浇注工序;芳烃和含氧VOCs是各生产工序OFP贡献较高的组分.1,3,5-三甲苯、1,2,4-三甲苯、甲苯和间/对-二甲苯等芳烃是铸造行业OFP贡献较高的物种,总贡献比例超过60%.建议重点对喷漆工序排放VOCs采取有效治理措施;对造型、熔炼和浇注等工序排放VOCs应采取有效收集和治理措施.  相似文献   

20.
成都市典型工艺过程源挥发性有机物源成分谱   总被引:12,自引:8,他引:4  
选取成都市人造板、医药制造和化工制品等工艺过程源典型企业,通过采样瓶和SUMMA罐采样及GC-MS和国标分析方法,获取了人造板等行业各生产工艺环节的挥发性有机物(VOCs)排放组分特征.其中,人造板生产工艺分为制胶、调胶、分选和热压,医药制造分为生产车间和废水处理.结果表明,人造板和医药制造VOCs贡献组分以OVOCs为主,占VOCs总排放的50%以上.甲醛制造有组织和无组织排放组分差异较大,有组织以OVOCs为主而无组织以卤代烃为主.涂料制造VOCs排放与其原辅料相关性较高,VOCs排放组分以芳香烃和OVOCs为主.人造板各工艺环节除调胶外,最主要的VOCs组分均为甲醛,其排放占比达到50%以上.医药制造各工艺环节的首要VOCs组分均为乙醇,1,4-二烷、乙酸乙酯和甲苯等亦为主要组分.甲醛制造以丙酮和乙醇等组分为主.涂料制造主要以间,对-二甲苯等芳香烃为主.以臭氧生成潜势表征人造板、医药制造和化工的VOCs污染源反应活性,结果表明不同行业VOCs组分对反应活性的贡献类似,均主要以甲醛、乙醇等OVOCs和部分芳香烃等高活性组分为主.应对工艺过程源等行业分环节监管,并重点关注臭氧生成潜势较大的VOCs组分,分析行业排放特征和化学机制,从源头控制O3生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号