首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Daily PM2.5, PM2.5–10 and TSP have been collected by Universal and PS‐1 sampler simultaneously at a site within Taichung between February and March 1999. The filters were analyzed by atomic absorption spectrophotometry for the elemental analysis of Ca, Fe, Mn, Pb, Cu, Zn and Cr. In general, the concentration of these metallic elements are higher in fine particles than in coarse particles. On average, PM10 accounted for 67% of the TSP at daytime, while at nighttime PM10 accounted for only 44% of the TSP. For PM2.5, PM2.5–10 and TSP concentrations, there were no significant differences between day and night period. The averaged concentrations of metallic elements in PM2.5 at daytime were all higher than that at nighttime. Ca, Fe and Zn have large and variable PM2.5 concentrations at both daytime and nighttime. For the daytime Zn and Pb account for the largest portion of the heavy metal elements. For the nighttime, Zn and Cr make the largest portion of the heavy metal elements. The concentrations of Mn were higher on fine particulates. The trace metals Cu and Cr in Taichung are probably due to particulates emitted by Taichung Fire Power Plants transported into the sampling area by the prevailing northwesterly wind.  相似文献   

2.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

3.
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.  相似文献   

4.
In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m3, 3.17, and 0.024 ng/m3, respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m2 min and 0.022 ng/m2 min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m3, 2.74, and 0.018 ng/m3, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m2 min and 0.016 ng/m2 min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.  相似文献   

5.
Trace metal concentrations were determined in particulate matter (PM10) in ambient air of four purposively selected residential areas in Ibadan, Nigeria namely Bodija market (BM), Ojo Park (OP), Oluyole Estate (OE) and University of Ibadan (UI). PM10 was determined in the morning (7–10 a.m.) and afternoon (2–5 p.m.) for 12 weeks in the dry season months of January–March using a volumetric sampler following standard procedures and levels compared with WHO guideline limits. Glass-fibre filter papers exposed to the particulate matter were digested using appropriate acid mixtures, and the digest analysed for trace metals including Ni, Cr, Mn, Zn, and Pb using ICPMS method and levels compared with WHO limits. Data was analysed using ANOVA and Pearson correlation test at 5 % level of significance. The highest mean PM10 concentrations 502.3 ± 39.9 μg/m3 were recorded in the afternoon period at BM, while the lowest concentration 220.6 ± 69.9 μg/m3 was observed in the morning hours at UI. There was a significant difference between the PM10 levels across the various locations (p < 0.05), and all the levels were higher than WHO limit of 50 μg/m3. The highest levels of Ni, Zn and Pb were recorded at BM, which also had the highest PM10 burden. The trend in Pb levels across the locations was BM > UI > OP > OE with the highest level 5.70 μg/m3 in BM nearly fourfolds WHO limits of 1.5 μg/m3. There was a significant correlation between PM10 and Ni (p < 0.05).Urban communities with increased human activities especially motor traffic recorded both higher levels of PM10 and toxic trace metals. There is need to carry out source apportionment to establish the origin of these trace metals in future studies.  相似文献   

6.
A sampling campaign including summer, autumn and winter of 2014 and spring of 2015 was accomplished to obtain the characteristic of chemical components in PM2.5 at three sites of Kunming, a plateau city in South-west China. Nine kinds of water-soluble inorganic ions (WSI), organic and element carbon (OC and EC) in PM2.5 were analyzed by ion chromatography and thermal optical reflectance method, respectively. Results showed that the average concentrations of total WSI, OC and EC were 22.85±10.95 µg·m-3, 17.83±9.57 µg·m-3 and 5.11±4.29 µg·m-3, respectively. They totally accounted for 53.0% of PM2.5. Secondary organic and inorganic aerosols (SOA and SIA) were also assessed by the minimum ratio of OC/EC, nitrogen and sulfur oxidation ratios. The annual average concentrations of SOA and SIA totally accounted for 28.3% of the PM2.5 concentration. The low proportion suggested the primary emission was the main source of PM2.5 in Kunming. However, secondary pollution in the plateau city should also not be ignorable, due to the appropriate temperature and strong solar radiation, which can promote the atmospheric photochemical reactions.
  相似文献   

7.
Exposure to airborne particulate matter results in the deposition of millions of particle in the lung; consequently, there is need for monitoring them particularly in indoor environments. Case study was conducted in three different microenvironments, i.e., urban, rural and roadside to examine the elemental bioavailability in fine particulate matter and its potential health risk. The samples were collected on polytetrafluoroethylene filter paper with the help of fine particulate sampler during August–September, 2012. The average mass concentration of PM2.5 was 71.23 µg m?3 (rural), 45.33 µg m?3 (urban) and 36.71 µg m?3 (roadside). Elements in PM2.5 were analyzed by inductively coupled plasma atomic emission spectroscopy. Percentage bioavailability was determined to know the amount of soluble fraction that is actually taken across the cell membrane through inhalation pathway. Cadmium and lead were found to have cancer risk in a risk evaluation using an Integrated Risk Information system.  相似文献   

8.
In this study, we collected particles with aerodynamic diameter ?2.5 μm (PM2.5) from three different public indoor places (a supermarket, a commercial office, and a university dining hall) in Jinan, a medium-sized city located in northern China. Water-soluble inorganic ions of PM2.5 and particle size distributions were also measured. Both indoor and outdoor PM2.5 levels (102.3–143.8 μg·m?3 and 160.2–301.3 μg·m?3, respectively) were substantially higher than the value recommended by the World Health Organization (25 μg·m?3), and outdoor sources were found to be the major contributors to indoor pollutants. Diurnal particle number size distributions were different, while the maximum volume concentrations all appeared to be approximately 300 nm in the three indoor locations. Concentrations of indoor and outdoor PM2.5 were shown to exhibit the same variation trends for the supermarket and dining hall. For the office, PM2.5 concentrations during nighttime were observed to decrease sharply. Among others, SO 4 2? , NH 4 + and NO 3 ? were found to be the dominant water-soluble ions of both indoor and outdoor particles. Concentrations of NO 3 ? in the supermarket and office during the daytime were observed to decrease sharply, which might be attributed to the fact that the indoor temperature was much higher than the outdoor temperature. In addition, domestic activities such as cleaning, water usage, cooking, and smoking also played roles in degraded indoor air quality. However, the results obtained here might be negatively impacted by the small number of samples and short sampling durations.  相似文献   

9.
To assess the exposure doses of PM2.5 and to investigate its chemical components for the subpopulation (i.e., school children and industrial downwind residents), simultaneous sampling of indoor and outdoor PM2.5 was conducted at an elementary school close to traffic arteries and a residence located in the downwind area of a steel plant in metropolitan Guangzhou in 2010. Chemical components, i.e., organic carbon, elemental carbon and 6 water soluble ions were analyzed in PM2.5. A survey was also conducted to investigate the time-activity patterns of the school children and the industrial downwind residents. Indoor and outdoor PM2.5 were 63.2 ± 20.1 and (76.7 ± 35.8) μg/m3 at the school, and 118.8 ± 44.7 and 125.7 ± 57.1 μg/m3 in the community, respectively. Indoor PM2.5 was found to be highly related to outdoor sources, and stationary sources were the significant contributors to PM2.5 at both sites. The daily average doses of PM2.5 for the school children at the school (D children) and the industrial downwind residents in the community (D residents) were (7.6 ± 1.9) and (36.1 ± 36.8) μg/kg-day, respectively. The daily average doses of particulate organic mass and SO4 2? were the two most abundant chemical components in PM2.5. PM2.5 exposure for the school children was contributed by indoor and outdoor environments by 48.8 and 51.2 %, respectively; for the industrial downwind residents, the contributions were 66.0 and 34.0 %, respectively. Age and body weight were significantly and negatively correlated with D children, while age, body weight and education level were significantly and negatively correlated with D residents; gender was not a significant factor at both cases.  相似文献   

10.

The ambient air particulates pollutants of total suspended particulates (TSP) and PM2.5 were collected by using PS-1 and Wilbur PM2.5 sampler, simultaneously during the year of 2015–2017 at a photoelectric factory in Science Park of central Taiwan. And those of the ambient air atmospheric metallic elements (Cr, Mn, Ni, Cu, Zn, Pb) concentrations which attached on the TSP and PM2.5 were analyzed by using inductively coupled plasma optical emission spectrometer. In addition, identifying anthropogenic and natural pollutants sources were conducted by using the enrichment factor (EF) and principal component analysis (PCA) methods. The results indicated that the average TSP and PM2.5 concentrations were ranked highest in winter season, while summer season was ranked lowest during the year of 2015–2016. In addition, the average highest metallic element concentrations were occurred in winter season for both TSP and PM2.5 during the year of 2015–2016, while the average lowest metallic elements concentrations in TSP and PM2.5 were also occurred in winter season during the year of 2016–2017. Moreover, the EF analysis results showed that the metallic element Zn came from anthropogenic emission source. As for metallic element Mn, the results showed that metallic element Mn was mainly attributed to natural emission in this study. Finally, the PCA results showed that metallic elements Cr, Zn and Pb were the dominant emissions metallic elements in this study. As for PM2.5, the results showed that the metallic elements Cr, Cu and Pb were the dominant emissions metallic elements at this HPB sampling site.

  相似文献   

11.
The pollution characteristics of PM2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting were investigated. During the whole meeting, nine PM2.5 samples were collected at a suburban site of Xinxiang, and the average concentration of PM2.5 was 122.28 μg m?3. NO3 ?, NH4 +, SO4 2? accounted for 56.8% of the total water-soluble ions. In addition, with an exception of Cl?, all of water-soluble ions decreased during the meeting. Total concentrations of crustal elements ranged from 6.53 to 185.86 μg m?3, with an average concentration of 52.51 μg m?3, which accounted for 82.5% of total elements. The concentrations of organic carbon and elemental carbon were 7.71 and 1.52 μg m?3, respectively, lower than those before and after the meeting. It is indicated that during the meeting, limiting motor vehicles is to reduce exhaust emissions, delay heating is to reduce the fossil fuel combustion, and other measures are to reduce the concentration of PM2.5. The directly dispersing by mixing layerheight increase and the indirectly reducing the formation of secondary aerosol by low relative humidity, andthese are the only two key removing mechanisms of PM2.5 in Xinxiang during the meeting.  相似文献   

12.
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg?1) compared with the coarse fraction (1210–22,000 mg kg?1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.  相似文献   

13.
Investigations on the fluctuation in PM10 air pollution in Volos, a medium-sized industrialized port city in the Mediterranean, are presented for the 5-year period between 2009 and 2014. The levels detected have been examined in relation to legislatively set limits, sampling year, and day of the week. A PM10 spring sampling campaign has been performed in 2014 and metals and other elements in the PM10 mass have been quantified. Source origin has been attempted for the latter sampling campaign and human health risk has been assessed. Results show compliance with the mean annual value of 40 μg m?3 of 2008/50/EC for the city; however, exceedances of the daily quality standard of 50 μg m?3 were frequently recorded. Shifts in PM10 concentrations and in contributing sources have been recorded; nevertheless, longer duration data series are needed for safe deductions. Element measurements have enabled source identification for early summer of 2014, with Earth's crust minerals and anthropogenic sources being the main factors. Cumulative non-carcinogenic risk may exceed the threshold value of 1. Possible involvement of sea salt aerosol and desert dust long-range transport has also been assessed. These results may furnish databases on PM pollution of Greek cities as well as other Mediterranean urban centers with similar characteristics.  相似文献   

14.
Ambient PM2.5 samples were collected at four sites in Xiamen, including Gulangyu (GLY), Hongwen (HW), Huli (HL) and Jimei (JM) during January, April, July and October 2013. Local source samples were obtained from coal burning power plants, industries, motor vehicles, biomass burning, fugitive dust, and sea salt for the source apportionment studies. The highest value of PM2.5 mass concentration and species related to human activities (SO4 2–, NO3 , Pb, Ni, V, Cu, Cd, organic carbon (OC) and elemental carbon (EC)) were found in the ambient samples from HL, and the highest and lowest loadings of PM2.5 and its components occurred in winter and summer, respectively. The reconstructed mass balance indicated that ambient PM2.5 consisted of 24% OM (organic matter), 23% sulfate, 14% nitrate, 9% ammonium, 9% geological material, 6% sea salt, 5% EC and 10% others. For the source profiles, the dominant components were OC for coal burning, motor vehicle, biomass burning and sea salt; SO4 2– for industry; and crustal elements for fugitive dust. Source contributions were calculated using a chemical mass balance (CMB) model based on ambient PM2.5 concentrations and the source profiles. GLY was characterized by high contributions from secondary sulfate and cooking, while HL and JM were most strongly affected by motor vehicle emissions, and biomass burning and fugitive dust, respectively. The CMB results indicated that PM2.5 from Xiamen is composed of 27.4% secondary inorganic components, 20.8% motor vehicle emissions, 11.7% fugitive dust, 9.9% sea salt, 9.3% coal burning, 5.0% biomass burning, 3.1% industry and 6.8% others.
  相似文献   

15.
Abstract

Airborne particulate matter PM2.5 was collected in an industrial, a low-density, and a high-density residential area of Lagos from December 2010 to November 2011, and elemental composition was determined by proton-induced X-ray emission. Across the months, mass concentrations ranged from 13 to 237?µg?m?3, exceeding the World Health Organization guideline value of 10?µg?m?3. Data on 24 elements were obtained, with maximum values during Harmattan season months; source identification and apportionment studies by positive matrix factorization suggested that petroleum oil combustion (70%) was the major source of PM2.5 and could pose a great hazard to Lagos receptors.  相似文献   

16.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

17.
The highly populated Indian regions are currently in a phase of rapid economic growth resulting in high emissions of carbonaceous aerosols. This leads to poor air quality and impact on climate. The chemical composition of carbonaceous aerosols has rarely been studied in industrial areas of India. Here, we investigated carbonaceous aerosols in particulate matter (PM) monthly in the industrial area of Delhi in 2011. The concentrations of organic C and elemental C in PM10 fraction were analyzed. Results show a clear seasonal variability of organic and elemental C. PM10 ranged 95.9–453.5 μg m?3, organic C ranged 28.8–159.4 μg m?3, and elemental C ranged 7.5–44.0 μg m?3; those values were higher than reported values. Organic and elemental C were correlated with each other in pre-monsoon and winter seasons, implying the existence of similar emission sources such as coal combustion, biomass burning and vehicular exhaust. The annual average contribution of total carbonaceous aerosols in PM10 was estimated as 62 %.  相似文献   

18.

The Angouran Mine, located in northwest Iran, is the largest Zn–Pb producer in the Middle East. This study was designed to investigate the distribution, geochemistry, and mineralogy of the aerosols in the mining area and to assess their likely health impacts on the local residents. For this purpose, 36 aerosol samples were collected from 2014 to 2015 at nine sites located in mine district and upwind and downwind directions. The concentration of potentially toxic elements in the aerosols was determined using AAS instrument. Size, morphology, and mineralogy of the particles were studied using SEM and EDX spectra. The results indicate that the amount of total suspended particles in upwind, mine district, and downwind sites is 95.5, 463.4 and 287.5 µg/m3, respectively. The concentrations of PM2.5 in the three locations are 8.9, 134.7, and 51.8 µg/m3, whereas the PM10 contents are 2.9, 74.4, and 15.5 µg/m3, respectively. These observations point to the impact of mining activities on the concentration of aerosols in the local atmosphere. The values of air quality index also show the probable effects of the mining activities on the health of the local populations, especially for allergic peoples. The average concentration of Zn in the samples collected from the mining district (290 µg/kg) is much higher than its value in the upwind sites (27 µg/kg). The highest concentration of As (70 µg/kg), Cd (10 µg/kg), and Pb (3 µg/kg) is in downwind sites, which shows the negative impact of mining activities on the local air quality. Temporally, the highest concentration of the studied elements is recorded in spring season, especially for PM2.5 collected in downwind stations. Based on the results of SEM and EDX spectra, three groups of minerals, i.e., carbonates, silicates, and sulfides, are present in the aerosol particles, confirming the local source for the aerosols. SEM analyses showed that the aerosol particles with dissimilar chemical composition have different morphologies such as irregular, rounded, elongated, and angular. On the basis of the results, the mining activities in the Angouran Zn–Pb Mine may have various short- and long-term consequences on the public health, especially due to high amount of the finer particles (PM2.5) and the higher concentration of the potentially toxic elements in PM2.5 which can penetrate into the lungs.

  相似文献   

19.
Ammonia has emerged as a promising hydrogen carrier with applications as an energy source in recent years. However, in addition to being toxic, gaseous ammonia is a precursor of secondary inorganic aerosols. The concentration of ambient fine particulate matter (PM2.5) is intrinsically connected to public health. In this study, PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan, were investigated. It was assumed that 20% of the electricity consumption in Kanto Region, the most populated area in Japan, was supplied by ammonia-hydrogen energy. The PM2.5 resulted from incomplete ammonia decomposition was simulated by a chemical transport model: ADMER-PRO (modified version). Based on the incremental PM2.5 concentration, health impacts on the elderly (individuals over 65 years old) were quantitatively evaluated. The ammonia emission in this scenario increased PM2.5 by 11.7% (0.16 μg·m–3·y–1) in winter and 3.5% (0.08 μg ·m–3·y–1) in summer, resulting in 351 premature deaths per year. This study suggests that costeffective emissions control or treatment and appropriate land planning should be considered to reduce the associated health impacts of this type of energy generation. In addition, further in-depth research, including cost-benefit analysis and security standards, is needed.
  相似文献   

20.
Particulate matter concentrations were measured in an industrial region in the Ganjam district of Odisha. The average levels of suspended particulate matter (SPM) were measured to be 142 ± 8 and PM10 of particulate matter with a size of less than 10 micrometers (PM10) to be 50 ± 15 μg m?3. Out of the 14 elements determined, Ca, Na, Mg, Fe, and K contributed more than 95% of the total weight. In enrichment factors, the trace elements, i.e., Zn, Pb, Cd, and Hg were observed to be highly enriched in the SPM and PM10. Factor analysis indicates that more than 75% of the variance was due to five component factors, which have eigenvalues greater than 1. Intake of elements through inhalation route to adults has been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号