首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
化肥减量配施有机肥是实现环境友好,保持耕地质量的国家战略,对防治土壤污染和实现农业可持续发展具有重要意义.以三峡库区紫色土旱坡地为研究对象,通过田间试验研究了在油菜/玉米轮作模式下,对照处理、常规施肥、优化施肥、生物炭(化肥减量配施生物炭)及秸秆还田(化肥减量配施秸秆还田)这5个处理对土壤氮、磷形态、作物氮磷含量、肥料利用率及作物产量的影响.结果表明,土壤铵态氮含量在油菜季的秸秆处理最高,为4.51 mg·kg-1.各处理玉米季的土壤铵态氮和碱解氮含量均明显高于油菜季.化肥减量配施有机肥可以保障并提高土壤全氮的含量.其中,秸秆处理的油菜季和玉米季土壤全氮含量均最高,分别为0.56 g·kg-1和0.60 g·kg-1.秸秆处理的油菜季土壤有效磷含量最高(0.76 mg·kg-1).化肥减量配施有机肥的土壤全磷含量较常规处理没有显著差异(P>0.05).化肥减量配施有机肥表现出略有增产的趋势,其中生物炭处理的油菜产量最高(2328 kg·hm-2);常规处理的玉米产量最高(5838 kg·hm-2).无论油菜季还是玉米季,各化肥减量处理较常规处理都普遍提高了氮肥和磷肥的农学利用率.在紫色土地区中,化肥减量配施生物炭和秸秆还田均有利于改善土壤养分、提高化肥利用率,达到减少氮肥、磷肥施用量和提高作物产量的效果.  相似文献   

2.
干湿交替会影响土壤硝化和反硝化等N2O主要的产生过程,频繁的干湿交替在以海南为代表的热带水稻种植地区十分常见.生物炭作为一种土壤改良剂在改良土壤理化性质,减少土壤温室气体排放方面应用广泛,然而当前关于生物炭在琼北地区水稻土频繁干湿交替过程中减排效果研究并未深入.本试验以海南琼北地区典型水稻土为供试土壤,以400℃厌氧条件下炭化的玉米秸秆生物炭为供试生物炭,探究不同水分管理条件下添加生物炭对土壤温室气体排放及微生物相关功能基因的影响.试验设置干湿交替条件下不添加生物炭(AWD1),干湿交替并添加2%生物炭(AWD2),干湿交替并添加4%生物炭(AWD3),持续淹水不添加生物炭(CF1),持续淹水并添加2%生物炭(CF2),持续淹水并添加4%生物炭(CF3)共6个处理,进行为期30 d的25℃恒温避光培养.结果表明:①不同水分条件下添加玉米秸秆生物炭均可减少酸性水稻土中N2O的排放(P<0.05,下同),AWD3处理N2O排放总量为0.43 mg·kg-1,相比AWD1处理减少了68%;②玉米秸秆生物炭在不同水分管理条件下均可以显著提高土壤pH,添加生物炭处理相对于不添加生物炭处理在培养结束后土壤pH平均提高了0.5个单位,同时提高土壤NH4+-N含量,但会导致Eh的降低;③玉米秸秆生物炭的添加显著降低了氨氧化细菌(AOB)丰度,显著提高了nosZ基因丰度,降低了(nirK+nirS)/nosZ的比值,抑制了硝化过程,同时促进了反硝化过程N2O的还原,从而降低了N2O排放.结果表明,干湿交替过程添加生物炭有利于减少水稻田土N2O排放,在琼北地区农业温室气体减排方面有较大的应用前景.  相似文献   

3.
为探讨生物炭对农田化肥面源污染的防控效果,本文以北运河流域(北京段)下游"上壤下砂"、施肥量大、易漏水漏肥菜田为研究对象,分析了田间条件下不同用量生物炭配合化肥底施和施炭基肥对土壤氮磷纵向迁移、结球生菜产量品质及土壤微生物数量的影响.结果表明:与单施化肥(T1)相比,①化肥配施生物炭750 kg·hm-2(T2)、2250 kg·hm-2(T3)、4500 kg·hm-2(T4)和施炭基肥(T5)处理20~40 cm土壤硝态氮含量分别降低41.20%、39.60%、24.20%和13.78%,0~20 cm土壤有效磷(Olsen-P)含量分别提高26.30%、24.70%、32.60%和11.20%,40~60 cm土壤Olsen-P含量分别减少27.30%、26.10%、33.50%和41.30%,T3和T5处理20~40 cm土壤Olsen-P含量分别减少19.90%和12.50%,表明农田配施生物炭或者施炭基肥可提高耕层土壤供磷量,并有效阻控耕层硝态氮和Olsen-P向下层土壤淋溶迁移;②化肥配施生物炭(T2~T4)对结球生菜产量、维生素C(Vc)和硝酸盐含量均无显著影响,施炭基肥(T5)处理结球生菜生物产量显著增加了14.36%(p<0.05),Vc含量显著提高了20.00%(p<0.05);③T4和T5处理土壤细菌数量分别减少57.49%和47.50%(p<0.05),且T5处理土壤真菌数量减少46.67%(p<0.05).综合考虑不同土层氮磷、结球生菜产量品质及土壤微生物数量变化,推荐生物炭配施量为750~2250 kg·hm-2,并建议进一步加强生物炭对农田土壤微生物群落的影响监测.  相似文献   

4.
热区稻菜轮作系统瓜菜季施肥后大量硝态氮积累,导致后续的水稻季淹水后硝态氮的淋失以及大量N2O排放,使氮素损失以及温室效应加剧.如何提高硝态氮利用率,减少N2O排放成为了亟待解决的问题.试验共设置6个处理:添加200 mg·kg-1 (以N计,下同)KNO3(CK);添加200 mg·kg-1 KNO3+2%生物炭(B);添加200 mg·kg-1 KNO3和1%花生秸秆(P);添加200 mg·kg-1 KNO3+2%生物炭+1%花生秸秆(P+B);添加200 mg·kg-1 KNO3+1%水稻秸秆(R);添加200 mg·kg-1 KNO3+2%生物炭+1%水稻秸秆(R+B),进行114 d的25℃恒温淹水培养,来探究有机物料添加对土壤淹水后温室气体排放和氮素利用的影响.结果表明,与CK相比,添加秸秆或秸秆和生物炭配施显著增加了土壤pH(P<0.05);B和P处理分别显著增加了41.6%和28.5%的N2O累计排放(P<0.05),P+B、R和R+B处理分别显著降低了14.1%、24.7%和36.7%的N2O累计排放(P<0.05);添加秸秆增加了净温室气体增温潜势(NGWP),增施椰壳生物炭能够显著减缓秸秆对NGWP的影响(P<0.05),秸秆和生物炭配合施用降低了NGWP,其中P+B显著降低NGWP(P<0.05),R+B不显著;添加秸秆或生物炭显著增加了土壤微生物量碳(MBC)(P<0.05),P+B最高,为502.26 mg·kg-1;秸秆和生物炭配施增加了土壤微生物量氮(MBN),P+B最高.N2O排放通量与pH呈极显著负相关(P<0.01),与NH4+-N和NO3--N呈极显著正相关(P<0.01);N2O累计排放量与MBN呈极显著负相关(P<0.01);NO3--N与MBN呈显著负相关(P<0.05),说明硝态氮的减少可能被微生物固持,微生物对硝态氮固持的增加也减少了N2O排放.综上所述,花生秸秆和椰壳生物炭配合施用能够显著抑制N2O排放,增加土壤MBC和MBN,是一种海南瓜菜季后充分利用氮肥,减少氮素损失,减缓N2O排放的一种合理措施.  相似文献   

5.
为研究酸性镉(Cd)污染土壤安全利用问题,以陕西商洛轻中度Cd污染农田为研究对象,分别施加生石灰、生物炭和钙镁磷肥,通过小麦-玉米轮作试验,探究不同用量钝化剂对Cd污染土壤的安全利用效果,筛选出最佳的钝化剂配比.结果表明:①通过钝化剂的施加,能不同程度地改善土壤质量.②施用钝化剂后,小麦和玉米的籽粒产量均有不同程度地提高.③3种钝化剂可有效地提升土壤pH值和降低土壤有效态Cd含量,生石灰2 340 kg·hm-2(C3)处理效果最佳,分别增加小麦和玉米土壤pH 1.453和1.717单位,减少有效态Cd含量34.38%和30.20%.④施加生物炭1 800 kg·hm-2(B2)处理对降低小麦根系、秸秆和籽粒Cd含量效果最好,较CK分别显著降低了53.60%、38.86%和52.96%,其小麦籽粒ω(Cd)降低至0.09 mg·kg-1,低于《食品安全国家标准 食品中污染物限量》(GB 2762-2017)中规定的小麦Cd限量值(0.1 mg·kg-1);施加生物炭1 260 kg·hm-2(B1)处理对降低玉米根系、秸秆和籽粒Cd含量综合效果最佳,较CK分别显著降低43.74%、53.20%和94.57%,其玉米籽粒ω(Cd)降低至0.001 9 mg·kg-1,远低于《食品安全国家标准 食品中污染物限量》(GB 2762-2017)中规定的玉米Cd限量值(0.1 mg·kg-1).因此,在田间试验条件下,综合考虑各项指标的影响,生物炭在轻中度Cd污染的小麦-玉米轮作区农田土壤效果最好.  相似文献   

6.
为阐明施加秸秆及配施生物炭对茉莉花园土壤碳(TC)、氮(TN)、磷(TP)和铁(Fe)含量及其生态化学计量学特征的影响,并探讨土壤活性有机碳及碳库管理指数的响应,以福州茉莉园土壤为研究对象,设置对照、秸秆、秸秆配施生物炭3种处理样地,对施加处理下福州茉莉花园0~10 cm表层土壤碳、氮、磷、铁含量和生态化学计量学特征进行测定和分析.结果表明:不同施加处理下,茉莉园土壤TC、TN含量均值表现为秸秆配施生物炭处理>秸秆处理>对照处理(p<0.05),TP含量均值表现为秸秆处理>秸秆配施生物炭处理>对照处理(p<0.05),土壤Fe含量均值表现为秸秆处理大于对照和秸秆配施生物炭处理,显著增加了茉莉花园表层土壤铁含量(p<0.05).其次,秸秆配施生物炭处理较对照和秸秆处理提高了土壤C/N、C/P、C/Fe、N/P、N/Fe、P/Fe (p<0.05);茉莉花园0~10 cm土壤碳储量、氮储量、磷储量均值表现为秸秆配施生物炭处理显著高于对照处理(p<0.05),提高比例分别为46.5%、20.2%、10.2%,土壤铁储量表现为秸秆处理>对照处理>秸秆配施生物炭处理.此外,秸秆施加处理提高了土壤活性有机碳(CN),增加了土壤碳库活度指数(CPAI)和土壤碳库管理指数(CPMI);秸秆配施生物炭处理同样大幅度提升了土壤总有机碳含量,并显著提高了土壤碳库指数(CPI),但这部分主要是活性较低的稳态碳(CNA),因此,秸秆配施生物炭降低了土壤碳库活度(CPA)、土壤碳库活度指数(CPAI)和土壤碳库管理指数(CPMI).总体来看,从土壤固碳角度考虑,秸秆配施生物炭是更合理的利用措施.  相似文献   

7.
生物炭及改性生物炭已被广泛应用于重金属污染农田土壤修复领域.为探寻经济有效的镉(Cd)污染酸性紫色土壤修复改良材料,将酒糟制成酒糟生物炭(DGBC),并用纳米二氧化钛(Nano-TiO2)对其改性,制得两种改性酒糟生物炭TiO2/DGBC和Fe-TiO2/DGBC,采用水稻盆栽试验研究不同生物炭和不同施用量(1%、3%、5%)处理对土壤理化性质、养分含量、Cd赋存形态与生物有效性、水稻生长与Cd富集的影响.结果表明:①施用DGBC显著提高了酸性紫色土pH、CEC和养分含量,且TiO2/DGBC和Fe-TiO2/DGBC效果更好.②DGBC和改性DGBC使土壤Cd形态由可溶态向难溶态转变,残渣态Cd相较对照增加了1.22%~18.46%.土壤Cd生物有效性显著降低,DGBC、TiO2/DGBC和Fe-TiO2/DGBC分别使有效态Cd降低11.81%~23.67%、7.64%~43.85%和19.75%~55.82%.③施用DGBC和改性DGBC提高了水稻产量,DGBC、TiO2/DGBC和Fe-TiO2/DGBC在3%添加量时水稻产量最高,分别为30.60、37.85和39.10 g·pot-1,是对照的1.13、1.40和1.44倍.水稻各部位Cd含量显著降低,施用3种生物炭时水稻籽粒ω(Cd)分别为0.24~0.30、0.16~0.26和0.14~0.24 mg·kg-1,TiO2/DGBC在5%、Fe-TiO2/DGBC在3%和5%添加量时,水稻籽粒ω(Cd)低于0.2 mg·kg-1,符合国家食品中污染物限量标准(GB 2762-2022).总体来看,Nano-TiO2改性DGBC通过自身的吸附作用和影响土壤Cd形态分布有效降低了土壤Cd生物有效性,从而降低了水稻对Cd的吸收,同时促进了水稻生长,提高水稻产量.是一种具有潜在应用前景的Cd污染土壤修复改良材料.研究结果可以为Cd污染酸性紫色土农田修复和农业安全生产提供科学依据.  相似文献   

8.
为探明秸秆还田配施生物炭对夏玉米产量和土壤氧化亚氮(N2O)排放的影响,基于2019~2020年关中平原田间定位试验,利用静态暗箱-气相色谱法监测了土壤N2O排放通量,综合分析夏玉米产量、土壤N2O排放和土壤活性氮组分,明确了秸秆还田配施生物炭在培肥土壤、增产减排方面的效应.以秸秆不还田(S0)为对照,设置秸秆还田(S)和秸秆还田配施生物炭(SB)共3个处理.结果表明,各处理N2O排放峰值出现在秸秆还田后10 d,秸秆还田30 d后土壤N2O排放通量处于较低水平,土壤N2O排放通量与铵态氮(NH4+-N)、无机氮、微生物量氮(MBN)和可溶性有机氮(DON)含量呈显著的正相关关系(P<0.05).S较S0显著增加夏玉米产量、N2O累积排放量、单位产量N2O累积排放量和土壤总氮(TN)含量,分别为7.4%~13%、65.8%~132.2%、54.6%~103%和27.8%~33%.虽然SB较S提高夏玉米产量(2.5%~3.3%)的趋势不显著(P>0.05),但是SB较S显著降低N2O累积排放量和单位产量N2O累积排放量,分别为24.0%~27.3%和26.4%~29.2%.在土壤N2O排放通量达到峰值时,SB较S显著降低土壤N2O排放通量45.1%~69.6%,生物炭能够缓解秸秆还田所诱发的土壤N2O排放,具有削峰的作用.SB较S显著增加土壤总氮9.1%~12.2%.综合作物产量、N2O排放和土壤总氮,对夏玉米生产而言,秸秆还田配施生物炭不仅培肥地力,提高夏玉米产量,而且减少单位产量N2O累积排放量,是可供推广的兼顾作物产量和环境友好的适宜管理措施.  相似文献   

9.
基于华北集约化农田麦玉轮作系统,对比研究了添加生物炭和秸秆还田对整个轮作周期土壤N2O排放的影响,为农田土壤N2O减排和秸秆的资源化利用提供理论依据.试验共设4个处理:①对照(CK);②生物炭9.0 t·(hm2·a)-1(C);③秸秆全量还田(SR);④在全量秸秆还田的基础上添加生物炭9.0 t·(hm2·a)-1(C+SR).结果表明,小麦季,C处理土壤N2O排放略有降低但差异不显著,SR和C+SR处理促进了土壤N2O的排放(47.4%和71.8%);玉米季,C处理降低了土壤N2O的排放(29.8%),SR和C+SR处理促进了土壤N2O的排放(13.4%和35.8%);小麦季,土壤含水量、NH4+-N和MBN含量是影响土壤N2O排放的主要环境因子;玉米季,NO3--N、NH4+-N和MBC含量是影响土壤N2O排放的主要环境因子.因此,生物炭对农田N2O具有巨大的减排潜力,而秸秆直接还田不利于减少N2O排放,并且在秸秆还田基础上添加生物炭并不能改善这种影响,今后应加强对秸秆腐熟还田技术的研究.  相似文献   

10.
邓华  高明  龙翼  赖佳鑫  王蓥燕  王子芳 《环境科学》2021,42(11):5481-5490
明确生物炭和秸秆还田对未利用的新垦紫色土旱坡地土壤团聚体和有机碳的影响,为三峡库区土壤改良提供科学依据.采用田间试验方法,分析不施肥(CK)、常规施肥(NPK)、优化施肥(GNPK)、化肥减量配施秸秆(RSD)和化肥减量配施生物炭(BC)处理对不同粒径土壤团聚体含量及其有机碳贡献率的影响.结果表明,施肥可提高土壤养分含量水平,尤以RSD和BC处理最为显著;各处理以<0.25 mm粒级团聚体为优势粒级,施肥能显著增加5~0.5 mm粒级团聚体含量,提高平均重量直径(MWD)、几何平均直径(GMD)和R0.25(>0.25 mm团聚体含量)值,降低分形维数(D)和土壤结构体破坏率(PAD0.25)值(P<0.05);施肥能显著提高土壤有机碳含量,其中BC (6.73 g ·kg-1)和RSD (5.45 g ·kg-1)效果显著优于NPK (5.05 g ·kg-1)和GNPK (3.63 g ·kg-1);<0.25 mm团聚体有机碳贡献率最高(34.92%~59.49%),>5 mm团聚体有机碳贡献率最低(1.55%~6.01%),BC处理显著提高了5~2 mm和2~1 mm粒级团聚体有机碳贡献率(P<0.05),而NPK、RSD和GNPK在0.5~0.25 mm贡献率提升最为显著(P<0.05);各施肥处理均能提高油菜和玉米产量,年际间差异较大,但处理间差异不显著;土壤团聚体稳定性和作物产量随土壤有机碳的增加呈上升趋势.生物炭和秸秆还田能促进土壤中,大、中团聚体形成,有效提高土壤团聚体稳定性,增加土壤有机碳含量,促进作物增产,是改良紫色土土壤结构、提升土壤质量的有效措施.  相似文献   

11.
通过向土壤中添加水稻秸秆生物质碳(RSB)、玉米秸秆生物质碳(MSB)和鸡粪生物炭(CMB)来减少微囊藻毒素-LR(MC-LR)在生菜中的富集.结果表明,RSB、MSB和CMB在添加量为2%时,生菜叶片中MC-LR含量较空白分别降低了58.0%、49.5%和70.4%,使得每日估计摄入量降低到WHO的每日允许摄入量限值以下.CMB显著降低了土壤中MC-LR的总含量,而其他处理则无显著影响.3种生物质碳均显著降低了有效态MC-LR含量,且生菜根系和叶片中MC-LR的含量与土壤MC-LR有效态含量均呈显著正相关关系.所有添加生物质碳处理均对生菜生长无负面影响.  相似文献   

12.
通过向土壤中添加水稻秸秆生物质碳(RSB)、玉米秸秆生物质碳(MSB)和鸡粪生物炭(CMB)来减少微囊藻毒素-LR(MC-LR)在生菜中的富集.结果表明,RSB、MSB和CMB在添加量为2%时,生菜叶片中MC-LR含量较空白分别降低了58.0%、49.5%和70.4%,使得每日估计摄入量降低到WHO的每日允许摄入量限值以下.CMB显著降低了土壤中MC-LR的总含量,而其他处理则无显著影响.3种生物质碳均显著降低了有效态MC-LR含量,且生菜根系和叶片中MC-LR的含量与土壤MC-LR有效态含量均呈显著正相关关系.所有添加生物质碳处理均对生菜生长无负面影响.  相似文献   

13.
不同生物炭对磷的吸附特征及其影响因素   总被引:1,自引:1,他引:0  
为了实现植物生物质资源化利用,选择5种生物质材料制备生物炭,通过比较5种生物炭材料的磷吸附能力,筛选出了2种磷吸附效果较佳的材料,并探明了筛选生物炭材料的理化性质及其对磷的吸附特征.结果表明,5种生物炭材料中,仅水稻秸秆和玉米秸秆生物炭对磷具有吸附能力.Langmuir等温吸附曲线表明,水稻秸秆生物炭对废水中磷的吸附能力强于玉米秸秆生物炭,理论最大吸附量为:水稻秸秆生物炭(9.78 mg·g-1)>玉米秸秆生物炭(0.39 mg·g-1).水稻秸秆生物炭的比表面积(148.30 m2·g-1)和总孔体积(0.11 cm3·g-1)远高于玉米秸秆生物炭8.26 m2·g-1和0.03 cm3·g-1,同时水稻秸秆生物炭有更高的Mg、 Ca、 Fe和Al元素含量.水稻秸秆生物炭和玉米秸秆生物炭对磷吸附的最佳pH为酸性;在不同的pH范围内(3.0~11.0),水稻秸秆生...  相似文献   

14.
为揭示秸秆源黑炭连续还田对太湖平原稻麦轮作农田土壤生产力和固碳作用的影响,设黑炭施加量为0(CK)、4.5和9.0t/hm23个处理,通过2a 4个完整稻麦轮作季的盆栽试验,研究了稻秆来源黑炭每季还田下的稻麦作物产量.养分吸收状况及土壤理化性质的变化. 结果显示,土壤w(TOC)(TOC为总有机碳)和w(全N)随黑炭施加量的增加而增加. 每季黑炭施加量为9.0t/hm2时,土壤w(TOC)和w(全N)可分别提高46.7%~113.0%和9.3%~28.3%. 黑炭施入土壤后能够提高稻麦作物地上部分生物量,籽粒产量增加11.4%~60.5%,秸秆产量增加15.0%~56.8%. 黑炭处理下稻麦作物体内N、P、K、Mg和Ca的累积量显著提高,这一现象与每季结束后土壤w(全N)以及土壤有效元素含量〔w(有效P)、w(有效K)、w(有效Mg)和w(有效Ca)〕的增加相吻合. 黑炭施入可显著提高土壤pH和CEC(阳离子交换量),尤其是黑炭施加量为9.0t/hm2时,pH最高可达6.79,CEC最高达到12.7cmol/kg. 连续三季施入黑炭后,土壤容重比不施黑炭处理降低8.0%~12.2%. 试验结果表明,秸秆来源黑炭施入太湖平原稻麦农田可起到固碳增汇、增加土壤碳库容量的作用,也能改善土壤理化性质,提高土壤生产力.   相似文献   

15.
改性生物炭材料对稻田原状和外源镉污染土钝化效应   总被引:17,自引:1,他引:16  
为研究改性处理后的生物炭对镉污染土壤钝化效应,以油菜秸秆制备的生物炭(BC)为原材料,通过不同处理(HNO_3氧化、NaOH碱化、KMnO_4浸渍、FeCl_3浸渍)制备改性炭材料,在室内连续培养试验中,分析了其对原土/外源镉污染土壤的钝化效应.结果表明,原炭及改性生物炭均降低了原状土壤有效态镉含量,其中Na OH和KMnO_4改性的炭材料钝化作用超过50%;在外源污染土壤中,NaOH、KMnO_4、FeCl_3改性炭材料均降低了土壤有效态镉含量,以添加10%的BC-KMnO_4较佳,降低作用超30%,HNO3改性炭却活化了3.8%~24.5%的土壤有效态镉.10%BC-KMnO_4显著降低原状土壤中可交换态镉含量达65.1%,而BC-HNO_3在外源污染土壤中活化可交换态镉含量高达20.2%.原炭及改性生物炭均增加了土壤中有机碳、盐基离子含量;原炭及NaOH、KMnO_4改性生物炭提高了土壤pH,HNO_3改性炭则降低了土壤p H;原状土中有效态镉含量与pH、交换性钠离子含量呈显著负相关,外源镉污染土中有效态镉含量则与pH、有机碳、交换性镁、钾、钠离子含量呈显著负相关.KMnO_4改性生物炭显著提高土壤pH,增加土壤有机碳和盐基离子含量,降低土壤镉活性形态含量,可作为优选的原位钝化修复材料,而HNO_3改性生物炭显著降低了土壤pH,提高了土壤有效态和可交换态镉含量,具有促进土壤镉生物有效性的风险.  相似文献   

16.
水热法制备玉米叶基生物炭对亚甲基蓝的吸附性能研究   总被引:7,自引:0,他引:7  
以农业废弃物玉米叶和玉米秆为原材料,采用水热法制备生物炭,通过批试验方法考察了接触时间、污染物初始浓度、生物炭投加量、反应体系温度及溶液p H值等因素对2种生物炭吸附亚甲基蓝的影响,并对吸附规律进行了探讨.吸附动力学拟合结果发现,准二级动力学能更好地拟合吸附过程(R~2=0.9986~0.9999);颗粒内扩散方程拟合结果表明,2种生物炭对亚甲基蓝的吸附由液膜扩散和颗粒内扩散2个过程控制.玉米叶基生物炭对亚甲基蓝的吸附可以通过Freundlich方程来进行拟合(R~2=0.9898),说明吸附在生物炭表面是多分子层吸附过程;而玉米杆基生物炭对亚甲基蓝的吸附更符合Langmuir方程(R~2=0.9825),说明吸附在生物炭表面是单分子层吸附过程.与玉米杆基生物炭相比,玉米叶基生物炭具有更好的吸附性能,拟合理论最大吸附量为玉米杆基生物炭的1.25倍.  相似文献   

17.
农作物残体制备的生物质炭对水中亚甲基蓝的吸附作用   总被引:19,自引:6,他引:13  
将稻草、稻壳、大豆秸秆和花生秸秆低温热解制备生物质炭,用平衡吸附实验和淋溶实验研究了制备的生物质炭对阳离子染料亚甲基蓝的吸附及对水体中亚甲基蓝的去除效果.结果表明,生物质炭对亚甲基蓝有很高的吸附能力,但不同生物质炭之间存在较大差异,4种生物质炭吸附亚甲基蓝能力的大小顺序为:稻草炭>大豆秸秆炭>花生秸秆炭>稻壳炭,这一顺序与生物质炭表面负电荷数量和生物质炭比表面的大小顺序基本一致.但亚甲基蓝在生物质炭表面主要发生专性吸附,因为亚甲基蓝的吸附量随介质离子强度的增加而增加,而且亚甲基蓝吸附使生物质炭颗粒的Zeta电位向正值方向位移.Langmuir方程对吸附等温线的拟合效果较好,可以用Langmuir方程描述生物质炭对亚甲基蓝的吸附.由Langmuir方程预测的亚甲基蓝在稻草炭、大豆秸秆炭、花生秸秆炭和稻壳炭表面的最大吸附量分别为196.1、169.5、129.9和89.3 mmol.kg-1.淋溶实验表明,156 g稻壳炭可以将30 L水中亚甲基蓝浓度为0.3 mmol.L-1的染料几乎全部除去,累积吸附量达57.7 mmol.kg-1.生物质炭可以用作高效吸附剂去除染料废水中的亚甲基蓝.  相似文献   

18.
稻壳生物炭对污染土壤中稀土元素生物有效性的影响   总被引:3,自引:0,他引:3  
利用农业秸秆制备了污染土壤修复材料稻壳生物炭和稻壳灰,在模拟稀土(REE)污染的酸性土壤中,添加0、5%和10%的稻壳灰(RHA)稻壳生物炭(RHB),通过栽培实验考察RHA和RHB对REEs的形态和生物有效性的影响.春秋两季的盆栽实验结果表明,RHA和RHB的添加有效的降低了稀土的弱酸可提取态,随着添加量的增加效果越明显,10% RHA和10% RHB土壤中REEs的弱酸(乙酸)提取态较对照组分别降低了31.65%、19.915%,弱酸可提取态转化为了可还原态,与对照组相比,RHA和RHB的土壤中稀土元素的可还原态分别增加了26.367%、10.321%.两种修复材料显著降低了胡萝卜和茼蒿对稀土元素的富集,10% RHA处理组胡萝卜和茼蒿REEs含量分别较对照组降低了98.08%、93.41%,10% RHB胡萝卜和茼蒿REEs含量分别较对照组降低了68.61%、66.75%.研究结果表明,稻壳生物炭和稻壳灰的施用,能够有效的改善污染土壤的理化性质,降低稀土元素生物可利用态的含量,从而遏制植物对稀土元素的富集.  相似文献   

19.
郭晓雯  向贵琴  张发朝  江山  闵伟 《环境科学》2024,45(6):3571-3583
干旱区淡水资源不足,农业用水主要依赖于含盐的浅层地下水,但长期咸水灌溉会造成土壤盐分积累,土壤环境恶化,不利于作物生长.因此,在长期淡水(0.35 dS·m-1,FW)和咸水(8.04 dS·m-1,SW)灌溉的基础上,采用等碳量设计向土壤中添加生物炭(3.7 t·hm-2,BC)和秸秆(6 t·hm-2,ST),旨在明晰生物炭和秸秆还田对盐渍化土壤理化性质及微生物群落结构的影响.结果表明,咸水灌溉显著增加土壤含水量、电导率、速效磷和全碳的含量,但显著降低了pH值和速效钾的含量.生物炭和秸秆还田均显著增加土壤含水量、速效磷、速效钾和全碳的含量,但显著降低了咸水灌溉条件下的电导率值.各处理土壤优势菌门为变形菌门、放线菌门 、酸杆菌门、绿弯菌门和芽单胞菌门.咸水灌溉显著增加芽单胞菌门和变形菌门的相对丰度,但显著降低酸杆菌门和放线菌门的相对丰度.在淡水灌溉条件下,生物炭还田显著降低绿弯菌门的相对丰度;秸秆还田显著增加变形菌门的相对丰度,但显著降低酸杆菌门、放线菌门 、绿弯菌门和芽单胞菌门的相对丰度.在咸水灌溉条件下,生物炭还田显著降低绿弯菌门和芽单胞菌门的相对丰度;秸秆还田显著增加变形菌门的相对丰度,但显著降低酸杆菌门、放线菌门 、绿弯菌门和芽单胞菌门的相对丰度.LEfSe分析表明,咸水灌溉降低了土壤微生物的潜在标志物和功能数量;咸水灌溉条件下,生物炭还田增加了土壤微生物的潜在标志物和功能数量;秸秆还田增加土壤微生物的潜在功能数量;秸秆还田增加土壤微生物的潜在标志物和功能数量.RDA结果显示,土壤微生物群落和功能结构与EC1:5 、SWC和pH值显著相关.咸水灌溉会恶化土壤环境,不利于农业生产,其中EC1:5 、SWC和pH值是驱动土壤微生物群落和功能结构变化的重要因子,采用生物炭和秸秆还田可减缓盐分对土壤和作物的危害,为提高农业生产力奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号