首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Switchgrass(Panicum virgatum L.) is a perennial C_4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide(CO_2) fluxes and mitigate climate change. However, information on how these CO_2 fluxes respond to changing climate is still lacking. In this study, CO_2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean(Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO_2 fluxes. An improved methodology CPTE[Combining Parameter estimation(PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO_2 emissions based on different climate change scenarios. This study showed that:(i) the measured soil CO_2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term(2015–2070) provided a pattern of polynomial curve;(ii) the simulated CO_2 fluxes provided different patterns with temperature and precipitation changes in a long-term,(iii) the future CO_2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO_2 fluxes from soil as a result of temperature and precipitation changes to some extent.  相似文献   

2.
Forest ecosystems represent the dominant form of land cover in the northeastern United States and are heavily relied upon by the region’s residents as a source of fuel, fiber, structural materials, clean water, economic vitality, and recreational opportunities. Although predicted changes in climate have important implications for a number of ecosystem processes, our present understanding of their long-term effects is poor. In this study, we used the PnET-CN model of forest carbon (C), nitrogen (N) and water cycling to evaluate the effects of predicted changes in climate and atmospheric carbon dioxide (CO2) on forest growth, C exchange, water runoff, and nitrate ( $ {\text{NO}}^{ - }_{3} $ ) leaching at five forest research sites across the northeastern U.S. We used four sets of statistically downscaled climate predictions from two general circulation models (the Hadley Centre Coupled Model, version 3 and the Parallel Climate Model) and two scenarios of future CO2 concentrations. A series of model experiments was conducted to examine the effects of future temperature, precipitation, CO2, and various assumptions regarding the physiological response of forests to these changes. Results indicate a wide range of predicted future growth rates. Increased growth was predicted across deciduous sites under most future conditions, while growth declines were predicted for spruce forests under the warmest scenarios and in some deciduous forests when CO2 fertilization effects were absent. Both climate and rising CO2 contributed to predicted changes, but their relative importance shifted from CO2-dominated to climate-dominated from the first to second half of the twenty-first century. Predicted runoff ranged from no change to a slight decrease, depending on future precipitation and assumptions about stomatal response to CO2. Nitrate leaching exhibited variable responses, but was highest under conditions that imposed plant stress with no physiological effects of CO2. Although there are considerable uncertainties surrounding predicted responses to climate change, these results provide a range of possible outcomes and highlight interactions among processes that are likely to be important. Such information can be useful to scientists and land managers as they plan on means of examining and responding to the effects of climate change.  相似文献   

3.
The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of \( {0.70}_{-0.31}^{+0.27} \) to \( {1.52}_{-0.90}^{+1.09} \) Pg C yr?1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.  相似文献   

4.
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2?ha?1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2?ha?1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2?ha?1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.  相似文献   

5.
Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.  相似文献   

6.
To avoid dangerous changes to the climate system, the global mean temperature must not rise more than 2 °C from the 19th century level. The German Advisory Council on Global Change recommends maintaining the rate of change in temperature to within 0.2 °C per decade. This paper supposes that a geoengineering option of solar radiation management (SRM) by injecting aerosol into the Earth’s stratosphere becomes applicable in the future to meet those temperature conditions. However, a failure to continue the use of this option could cause a rapid temperature rebound, and thus we propose a principle of SRM use that the temperature conditions must be satisfied even after SRM termination at any time. We present economically optimal trajectories of the amounts of SRM use and the reduction of carbon dioxide (CO2) emissions under our principle by using an economic model of climate change. To meet the temperature conditions described above, the SRM must reduce radiative forcing by slightly more than 1 W/m2 at most, and industrial CO2 emissions must be cut by 80 % by the end of the 21st century relative to 2005, assuming a climate sensitivity of 3 °C. Lower-level use of SRM is required for a higher climate sensitivity; otherwise, the temperature will rise faster in the case of SRM termination. Considering potential economic damages of environmental side effects due to the use of SRM, the contribution of SRM would have to be much smaller.  相似文献   

7.
The objective of this paper is to assess how much carbon (C) is currently stored in a forest district in Thuringia, Germany, and how the carbon stocks will develop up to the year 2099 with a changing climate and under various management regimes (including no management), with different assumptions about carbon dioxide (CO2) fertilization effects. We applied the process-based model 4C and a wood product model to a forest district in Germany and evaluated both models for the period from 2002 to 2010, based on forest inventory data for the stands in the district. Then, we simulated the growth of the stands in the forest district under three different realizations of a climate change scenario, combined with different management regimes. Our simulations show that in 2099, between 630 and 1149 t C ha?1 will be stored in this district. The simulations also showed that climate change affects carbon sequestration. The no management strategy sequestered the highest amount of carbon (8.7 t C ha?1 year?1), which was greater than the management regimes. In the model, the possible fertilization effect of CO2 is an important factor. However, forest management remains the determining factor in this forest district.  相似文献   

8.
Carbon dioxide (CO2) emissions from inland waters to the atmosphere are a pivotal component of the global carbon budget. Anthropogenic land use can influence riverine CO2 emissions, but empirical data exploring cause-effect relationships remain limited. Here, we investigated CO2 partial pressures (pCO2) and degassing in a monsoonal river (Yue River) within the Han River draining to the Yangtze in China. Almost 90% of river samples were supersaturated in CO2 with a mean ± standard deviation of 1474 ± 1614 µatm, leading to emissions of 557 - 971 mmol/m2/day from river water to the atmosphere. Annual CO2 emissions were 1.6 - 2.8 times greater than the longitudinal exports of riverine dissolved inorganic and organic carbon. pCO2 was positively correlated to anthropogenic land use (urban and farmland), and negatively correlated to forest cover. pCO2 also had significant and positive relationships with total dissolved nitrogen and total dissolved phosphorus. Stepwise multiple regression models were developed to predict pCO2. Farmland and urban land released nutrients and organic matter to the river system, driving riverine pCO2 enrichment due to enhanced respiration in these heterotrophic rivers. Overall, we show the crucial role of land use driving riverine pCO2, which should be considered in future large-scale estimates of CO2 emissions from streams. Land use change can thus modify the carbon balance of urban-river systems by enhancing river emissions, and reforestation helps carbon neutral in rivers.  相似文献   

9.
河流CO2与CH4排放研究进展   总被引:1,自引:0,他引:1  
王晓锋  袁兴中  陈槐  何奕忻  罗珍  刘恋  何宗苡 《环境科学》2017,38(12):5352-5366
河流作为连接海-陆两大碳库的主要通道,其水-气界面二氧化碳(CO_2)与甲烷(CH_4)排放构成全球碳循环的重要环节,对全球气候变暖的贡献不容小觑.明确河流水体CO_2与CH_4产排过程、时空特征以及控制因素是认识河流生态学功能以及其对变化环境响应的重要内容.基于当前河流CO_2与CH_4排放研究进展,构建河流碳排放动力学概念框架(内源代谢、陆源输入),并从全球尺度、区域尺度、流域尺度综述了河流碳排放时空变异性特征以及存在的研究不足.在理解碳排放动力学概念框架和时空变异特征的基础上,构建了河流CO_2与CH_4动力学控制因子分层框架(内部因子:有机质、温度、营养盐;外部因子:水文、地貌、人类活动),深入探讨了河流碳排放的关键影响因素.最后,根据当前研究中存在的不足,提出河流碳排放应将纳入区域陆地碳平衡过程,今后研究重点应包括流域尺度上河流CO_2与CH_4内源产生与陆源输入相对贡献的量化研究、不同界面CO_2与CH_4产生与排放过程研究、高时空分辨率的监测数据的补充以及变化环境与人类活动干扰下河流碳排放的响应过程等,为理解河流生态学过程及生态系统功能提供基础,同时为我国进一步深入开展相关研究提供借鉴.  相似文献   

10.
An important subset of the utility sector has been scarcely explored for its ability to reduce carbon dioxide emissions: consumer-owned electric utilities significantly contribute to U.S. greenhouse gas emissions, but are often excluded from energy efficiency and renewable energy policies. They sell a quarter of the nation's electricity, yet the carbon impact of these sales is not well understood, due to their small size, unique ownership models, and high percentage of purchased power for distribution. This paper situates consumer-owned utilities in the context of emerging U.S. climate policy, quantifying for the first time the state-by-state carbon impact of electricity sales by consumer-owned utilities. We estimate that total retail sales by consumer-owned utilities account for roughly 568 million metric tons of CO2 annually, making this sector the 7th largest CO2 emitter globally, and examine state-level carbon intensities of the sector in light of the current policy environment and the share of COU distribution in the states. Based on efficiency and fuel mix pathways under conceivable regulations, carbon scenarios for 2030 are developed.  相似文献   

11.
'Greenhouse gases', especially carbon dioxide, are intimately connected to climate change. To understand the future evolution of the climate system and find ways to manage the concentration of atmospheric carbon dioxide, the processes and feedbacks that drive the carbon cycle must first be understood. However, our current knowledge of spatial and temporal patterns is uncertain, particularly over land and in regions of potentially high sensitivity to change like the boreal zone. The European Space Agency (ESA) GLOBCARBON project aims to generate fully calibrated estimates of at-land products quasi-independent of the original Earth Observation source for use primarily in Dynamic Global Vegetation Models, but also as a contribution to the Global Carbon Project, a cooperation between the International Geosphere Biosphere Programme, International Human Dimensions Programme and the World Climate Research Programme to aid understanding of global carbon cycling. The service will feature estimation of global burned area, the fraction of absorbed photosynthetically active radiation (fAPAR), leaf area index (LAI) and Vegetation Growth Cycle. The demonstrator will focus on ten complete years, from 1998 to 2007 when overlap exists between ESA Earth Observation sensors and others that are synergistic. However, the system will be flexible so that it is not dependent on any single satellite sensor and therefore can be retrospectively applied to existing archives and used with future satellite sensors.  相似文献   

12.
Due to significant differences in biotic and abiotic properties of soils compared to those of sediments, the predicted underlying microbe-mediated mechanisms of soil carbon emissions in response to warming may not be applicable for estimating similar emissions from inland water sediments. We addressed this issue by incubating different types of sediments, (including lake, small river, and pond sediments) collected from 36 sites across the Yangtze River basin, under short-term experimental warming to explore the effects of climate warming on sediment carbon emission and the underlying microbe-mediated mechanisms. Our results indicated that under climate warming CO2 emissions were affected more than CH4 emissions, and that pond sediments may yield a greater relative contribution of CO2 to total carbon emissions than lake and river sediments. Warming-induced CO2 and CH4 increases involve different microbe-mediated mechanisms; Warming-induced sediment CO2 emissions were predicted to be directly positively driven by microbial community network modularity, which was significantly negatively affected by the quality and quantity of organic carbon and warming-induced variations in dissolved oxygen, Conversely, warming-induced sediment CH4 emissions were predicted to be directly positively driven by microbial community network complexity, which was significantly negatively affected by warming-induced variations in pH. Our findings suggest that biotic and abiotic drivers for sediment CO2 and CH4 emissions in response to climate warming should be considered separately when predicting sediment organic carbon decomposition dynamics resulting from climate change.  相似文献   

13.
Rice (Oryza) is a staple food in China, and rice yield is inherently sensitive to climate change. It is of great regional and global importance to understand how and to what degree climate change will impact rice yields and to determine the adaptation options effectiveness for mitigating possible adverse impacts or for taking advantage of beneficial changes. The objectives of this study are to assess the climate change impact, the carbon dioxide (CO2) fertilization effect, and the adaptation strategy effectiveness on rice yields during future periods (2011–2099) under the newly released Representative Concentration Pathway (RCP) 4.5 scenario in the Sichuan Basin, one of the most important rice production areas of China. For this purpose, the Crop Estimation through Resource and Environment Synthesis (CERES)-Rice model was applied to conduct simulation, based on high-quality meteorological, soil and agricultural experimental data. The modeling results indicated a continuing rice reduction in the future periods. Compared to that without incorporating of increased CO2 concentration, a CO2 fertilization effect could mitigate but still not totally offset the negative climate change impacts on rice yields. Three adaptive measures, including advancing planting dates, switching to current high temperature tolerant varieties, and breeding new varieties, could effectively offset the negative climate change impacts with various degrees. Our results will not only contribute to inform regional future agricultural adaptation decisions in the Sichuan Basin but also gain insight into the mechanism of regional rice yield response to global climate change and the effectiveness of widely practiced global thereby assisting with appropriate adaptive strategies.  相似文献   

14.

Corporate image, European Emission Trading System and Environmental Regulations, encourage pulp industry to reduce carbon dioxide (CO2) emissions. Kraft pulp mills produce CO2 mainly in combustion processes. The largest sources are the recovery boiler, the biomass boiler, and the lime kiln. Due to utilizing mostly biomass-based fuels, the CO2 is largely biogenic. Capture and storage of CO2 (CCS) could offer pulp and paper industry the possibility to act as site for negative CO2 emissions. In addition, captured biogenic CO2 can be used as a raw material for bioproducts. Possibilities for CO2 utilization include tall oil manufacturing, lignin extraction, and production of precipitated calcium carbonate (PCC), depending on local conditions and mill-specific details. In this study, total biomass-based CO2 capture and storage potential (BECCS) and potential to implement capture and utilization of biomass-based CO2 (BECCU) in kraft pulp mills were estimated by analyzing the impacts of the processes on the operation of two modern reference mills, a Nordic softwood kraft pulp mill with integrated paper production and a Southern eucalyptus kraft pulp mill. CO2 capture is energy-intensive, and thus the effects on the energy balances of the mills were estimated. When papermaking is integrated in the mill operations, energy adequacy can be a limiting factor for carbon capture implementation. Global carbon capture potential was estimated based on pulp production data. Kraft pulp mills have notable CO2 capture potential, while the on-site utilization potential using currently available technologies is lower. The future of these processes depends on technology development, desire to reuse CO2, and prospective changes in legislation.

  相似文献   

15.
耦联水生光合作用的碳酸盐岩风化碳汇是全球碳循环研究的关键问题,生物碳泵效应不仅能够稳定碳酸盐风化碳汇,也有利于改善水环境,而过量输入氮、磷会导致水环境变差。土地利用变化作为全球变化重要内容之一,对流域碳氮磷的输出具有重要影响,但关于土地利用变化对喀斯特水体溶解无机碳、总氮和总磷输出影响的研究有待进一步加强。本研究以贵州普定沙湾喀斯特试验场为研究对象,以研究土地利用变化对水文、水化学、溶解无机碳汇通量、总氮通量和总磷通量的影响。结果表明,流量、径流深、土壤CO2浓度、pCO2、HCO3-浓度和电导率呈现出夏秋季节高、春冬季节低的变化特征,与pH变化相反。样地间,土壤CO2浓度、pCO2、HCO3-浓度和电导率表现为草地>灌丛地>农耕地>裸土地>裸岩地,与pH变化相反。参与岩溶作用的土壤CO2是造成水化学变化的主要原因。溶解无机碳汇通量和总氮通量呈现出夏秋季节高、春冬季节低的变化特征,总磷通量秋季最高、春季最低。样地间,草地溶解无机碳汇通量最大,HCO3-浓度是决定溶解无机碳汇通量大小的主导因素。有植被覆盖的土地利用方式的总氮、总磷浓度及其通量明显低于无植被生长的类型,总氮通量灌丛地最小,总氮浓度是决定总氮通量大小的主导因素,总磷通量草地最小,而流量是决定总磷通量大小的主导因素。综上,我们认为可以通过调整土地利用方式来达到增加岩溶碳汇和改善水环境双赢的目标。  相似文献   

16.
Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and spatially analyzed to compare CO2 sequestered by managing urban forests to equivalent amounts of CO2 emitted in both urban areas. Urban forests in Gainesville have greater tree density, store more carbon and present lower per-tree sequestration rates than Miami-Dade as a result of environmental conditions and urbanization patterns. Areas characterized by natural pine-oak forests, mangroves, and stands of highly invasive trees were most apt at sequestering CO2. Results indicate that urban tree sequestration offsets CO2 emissions and, relative to total city-wide emissions, is moderately effective at 3.4 percent and 1.8 percent in Gainesville and Miami-Dade, respectively. Moreover, converting available non-treed areas into urban forests would not increase overall CO2 emission reductions substantially. Current CO2 sequestration by trees was comparable to implemented CO2 reduction policies. However, long-term objectives, multiple ecosystem services, costs, community needs, and preservation of existing forests should be considered when managing trees for climate change mitigation and other ecosystem services.  相似文献   

17.
Difusive carbon dioxide(CO2) emissions from the water surface of the Three Gorges Reservoir, currently the largest hydroelectric reservoir in the world, were measured using floating static chambers over the course of a yearlong survey. The results showed that the average annual CO2 flux was(163.3 ± 117.4) mg CO2/(m2·hr) at the reservoir surface, which was larger than the CO2 flux in most boreal and temperate reservoirs but lower than that in tropical reservoirs. Significant spatial variations in CO2 flux were observed at four measured sites, with the largest flux measured at Wushan(221.9 mg CO2/(m2·hr)) and the smallest flux measured at Zigui(88.6 mg CO2/(m2·hr)); these diferences were probably related to the average water velocities at diferent sites. Seasonal variations in CO2 flux were also observed at four sites, starting to increase in January, continuously rising until peaking in the summer(June-August) and gradually decreasing thereafter. Seasonal variations in CO2 flux could reflect seasonal dynamics in pH, water velocity,and temperature. Since the spatial and temporal variations in CO2 flux were significant and dependent on multiple physical, chemical,and hydrological factors, it is suggested that long-term measurements should be made on a large spatial scale to assess the climatic influence of hydropower in China, as well as the rest of the world.  相似文献   

18.
Land use change on Indonesian peatlands contributes to global anthropogenic greenhouse gas (GHG) emissions. Accessible predictive tools are required to estimate likely soil carbon (C) losses and carbon dioxide (CO2) emissions from peat soils under this land use change. Research and modelling efforts in tropical peatlands are limited, restricting the availability of data for complex soil model parameterisation and evaluation. The Tropical Peatland Plantation-Carbon Assessment Tool (TROPP-CAT) was developed to provide a user friendly tool to evaluate and predict soil C losses and CO2 emissions from tropical peat soils. The tool requires simple input values to determine the rate of subsidence, of which the oxidising proportion results in CO2 emissions. This paper describes the model structure and equations, and presents a number of evaluation and application runs. TROPP-CAT has been applied for both site specific and national level simulations, on existing oil palm and Acacia plantations, as well as on peat swamp forest sites to predict likely emissions from future land use change. Through an uncertainty and sensitivity analysis, literature reviews and comparison with other methods of estimating soil C losses, the paper identifies opportunities for future model development, bridging between different approaches to predicting CO2 emissions from tropical peatlands under land use change. TROPP-CAT can be accessed online from www.redd-alert.eu in both English and Bahasa Indonesia.  相似文献   

19.
Mixing ratios for carbon dioxide (CO2), carbon monoxide (CO), hydrogen (H2), methane (CH4) and total non-methane hydrocarbons (TNMHC) were determined from the smoke plumes of two small (∼0.25 ha) prescribed biomass fires conducted on the Yucatan Peninsula in Mexico. In the region of these fires the combination of climate and shallow soils produces a scrubby and stunted forest with species composition similar to the Brazilian rain forest, but at a noticeably reduced size. Aircraft collections of smoke from these fires were analysed and used to determine CO2-normalized emission ratios (ΔX/ΔCO2; v/v; where Δ = in-plume specie concentration less background concentration) for CO, H2, CH4 and TNMHC produced and released into the atmosphere from these fires. Suprisingly, high mean emission ratios for TNMHCs (∼1.7% of CO2 release) and H2 (∼2.5% of CO2) were determined. Emission ratios for CO (∼7%) and CH4 (∼0.7%), however, were found to fall within expected bounds.  相似文献   

20.
A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO_2 concentration on the bioaccumulation,translocation and subcellular distributions of Cd and Zn in wheat seedlings(Triticum aestivum L.cv.Xihan 1.) at Dingxi,Gansu Province,China.The objective was to find evidence that global climate change is affecting the bioaccumulation of Cd and Zn in T.aestivum L.cv.Xihan 1.The results showed that compared to control A,elevated temperature and CO_2 increased Cd bioaccumulation in the shoots by 1.4–2.5 times,and increased that in the roots by 1.2–1.5times,but decreased Zn levels in wheat shoots by 1.4–2.0 times,while decreased that in the roots by 1.6–1.9 times.Moreover,temperature and CO_2 concentration increase also led to increased Cd concentration,and decreased Zn concentration in subcellular compartments of wheat seedlings.The largest Cd concentration increase(174.4%) was observed in the cell wall and debris fractions of shoots after they were subjected to the highest CO_2 and temperature treatment(TC3).The largest Zn concentration decrease(53.1%) was observed in the soluble(F3) fractions of shoots after they were subjected to the medium CO_2 and temperature treatment(TC2).The temperature and CO_2 increase had no significant effect on the proportional distribution of Cd and Zn in the subcellular fractions.The root-to-shoot translocation of Cd increased with the increasing temperature and CO_2 concentration.However,the Zn distributions only fluctuated within a small range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号