首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
该研究通过对邯郸市环境空气中PM_(2.5)样本进行采集和成分检测,分析了该地区PM_(2.5)的浓度及化学组成特征,利用相关性分析法和富集因子法定性判断了PM_(2.5)的主要来源,利用PCA模型定量计算了各类污染源的贡献率,最后将解析结果与已有的PMF模型结果进行了对比分析。结果表明,邯郸市PM_(2.5)日均浓度(2012年10月13日-2013年1月)为146.9 g/m3,是我国环境空气质量标准(Ⅱ级)的2倍。二次水溶性离子、OC、EC是邯郸市PM_(2.5)的主要成分,约占PM_(2.5)总质量浓度的71.5%,其中,OC是PM_(2.5)中含量最丰富的单个组分,大气有机污染特征明显。PCA模型源解析结果为:工业和燃煤33.3%,二次气溶胶和生物质燃烧21.7%,机动车为12.8%,道路扬尘9.1%。将PCA、PMF模型解析结果对比后发现2种模型对PM_(2.5)的来源有较为一致的判定,工业源和燃煤源是该地区PM_(2.5)的主要来源,两者的总贡献率分别为42.1%(PMF)和33.3%(PCA)。除此之外,PMF单独解析出了Ba、Mn、Zn源,K、As、V源和重油燃烧源,PCA单独解析出了生物质燃烧源,不同的解析结果一方面与模型本身有关,另一方面与模型选择的化学成分有关。  相似文献   

2.
为研究天津市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,于2015年4月采集天津市道路扬尘样品,利用再悬浮采样器将采集的样品悬浮到滤膜上,用离子色谱仪分析其水溶性无机离子组分,利用相关分析和比值分析及主成分法对其污染特征和来源进行探讨.结果表明,天津市8种水溶性无机离子占道路扬尘PM_(2.5)的6.13%±2.32%;不同道路类型道路扬尘PM_(2.5)中水溶性无机离子总量差异较大.相关性分析表明Na~+、K~+、Mg~(2+)和Ca~(2+)这4种离子同源性较高.NO_3~-/SO_4~(2-)比值显示固定源对天津市春季道路扬尘PM_(2.5)的影响更为显著.通过主成分分析法可知,天津市春季道路扬尘PM_(2.5)主要来源于燃煤源、移动源、生物质燃烧源和建筑施工扬尘.  相似文献   

3.
舟山市大气细颗粒物组分特征及其污染来源解析   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究舟山市大气细颗粒物(PM_(2.5))的主要污染来源,在2016年4月—2017年1月期间利用3个国控点对舟山市PM_(2.5)开展手工监测,并对其主要污染源进行样品采集,基于420个环境样品和13类源样品的化学组分分析,应用CMB-二重源解析技术,对舟山市颗粒物受体成分谱、本地化源成分谱的组分特征和颗粒物的污染来源进行分析。结果表明:普陀点的PM_(2.5)浓度均值低于位于主城区的檀枫点和临城点,3个站点的颗粒物浓度分别为(36. 46±19. 40),(40. 92±20. 68),(40. 03±21. 55)μg/m~3。PM_(2.5)受体中以NO_3~-、SO_4~(2-)、NH_4~+等二次组分含量最高,二次无机盐和移动源是监测期间舟山市大气PM_(2.5)的主要来源,解析结果具有显著的海岛型城市特征。以船舶源为代表的移动源既是颗粒物的重要一次源,又是二次无机盐生成的主要前体物贡献来源之一,故加强移动源的排放管理对于舟山市的颗粒物污染防治具有重要意义。  相似文献   

4.
我国典型钢铁行业主要工艺环节排放颗粒物源成分谱特征   总被引:7,自引:5,他引:2  
鉴于我国钢铁行业排放颗粒物源成分谱数量不足,有待更新的现状,致力于服务精细化颗粒物源解析的需求,采用稀释通道系统对武汉市某钢铁公司的3个主要工艺环节(烧结、炼钢、炼铁)排放源进行了采样.构建了3类PM_(2.5)源成分谱及3类PM_(10)成分谱,对源谱主要化学组分特征进行了研究,并与国内其他区域已有的钢铁行业源谱研究进行了对比.结果表明:(1)烧结工艺源成分谱中,SO_4~(2-)、Al和NH_4~+等含量高,PM_(2.5)源谱中质量分数依次为22. 2%、4. 5%和3. 5%,PM_(10)源谱中依次为36. 0%、5. 2%和2. 7%,炼铁工艺Fe元素含量最高,在PM_(2.5)源谱和PM_(10)源谱中分别达到28. 3%和24. 5%,炼钢工艺源谱Ca、Fe元素等为主要组分;(2)元素组分中,烧结工艺S元素含量最高,地壳元素在PM_(10)源谱中含量更高,炼铁工艺Pb、Cr等重金属含量偏高,炼钢工艺Cr富集;(3)源谱之间分歧系数的计算显示,同类工艺粗细粒径源谱相似性偏高,烧结工艺与其他两类工艺源谱之间差异性较高,炼钢工艺与炼铁工艺差异性较低.同国内其他区域研究源谱相比,发现Fe、Si和Ca等为钢铁行业排放颗粒物中标识性组分,而碳组分和SO_4~(2-)等组分特征随生产方式、除污设备等不同表现出不同特征.  相似文献   

5.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

6.
为了明确泰安市环境受体PM_(2.5)的污染特征和主要来源,该研究于2015年春、冬季在泰安市区采集了环境受体中PM_(2.5)样品,分析了PM_(2.5)及其化学组分特征,建立了源化学成分谱,基于化学质量平衡(CMB)模型对泰安市环境受体PM_(2.5)进行了来源解析,利用后轨迹分析了PM_(2.5)的区域传输路径。结果表明:PM_(2.5)及其化学组分与污染源贡献都具有明显的季节特征。春季,机动车尘是PM_(2.5)的首要贡献源类,分担率为19.11%;其次为二次硫酸盐、扬尘和煤烟尘,分担率分别为18.07%、16.08%、10.53%。冬季,煤烟尘为首要的污染源类,分担率为16.32%;机动车源和城市扬尘对PM_(2.5)的分担率比春季低,分别为11.99%和13.42%。后轨迹分析表明,春季PM_(2.5)可能受来自内蒙古等地的土壤风沙尘的长距离运输影响;冬天可能受来自蒙古、河北、山东周边等地燃煤源的长距离运输的影响。  相似文献   

7.
为了降低天津市滨海新区中PM_(2.5)的污染,需要对天津市滨海新区PM_(2.5)污染的时空分布和影响因素进行研究。研究天津市滨海新区近年来PM_(2.5)的时空分布特征,并选取PM_(2.5)的相关指标,对天津市滨海新区PM_(2.5)污染影响因素进行分析。结果表明,在天津市滨海新区的冬季时,PM_(2.5)的质量浓度值最高,在滨海新区的夏季时,PM_(2.5)的质量浓度值最低。PM_(2.5)在天津市滨海新区昼间大气中的质量浓度低于夜间大气中的质量浓度。  相似文献   

8.
北京市典型排放源PM_(2.5)成分谱研究   总被引:6,自引:1,他引:5  
为了建立和完善北京市PM_(2.5)本地化源谱,对北京市11类排放源PM_(2.5)进行采集,并测定其26种组分,分析了不同排放源源谱的组分特征.结果表明,在有组织排放源中,燃煤电厂PM_(2.5)中OC和Si含量很高,占PM_(2.5)的质量分数分别为8.56%和6.19%(平均值),而供热/工业锅炉排放PM_(2.5)中则是SO_4~(2-)(占48.38%)和OC(11.0%)比例最高,水泥窑炉PM_(2.5)中OC(7.12%)、Ca(4.81)和Si(4.41%)占有较大比例;垃圾焚烧排放的PM_(2.5)中Si、Ca、K和SO_4~(2-)均较高,分别占8.15%、9.36%、7.17%和6.79%,且Cl~-含量(2.5%)高于其他所有源,生物质燃烧源PM_(2.5)中OC(21.7%)、Si(6.75%)、Ca(6.15%)较为丰富,餐饮源PM_(2.5)中OC(19.44%)、SO_4~(2-)(5.76%)和K(3.11%)含量均较高;无组织开放源中,道路扬尘和土壤风沙PM_(2.5)化学组分含量变化较为一致,均是Si(分别为16.8%和9.3%)和OC(分别为8.89%和6.61%)最高,建筑水泥尘PM_(2.5)中Ca(17.46%)含量高于其他源;流动排放源PM_(2.5)中OC、EC比例最高,其中,重型柴油车的OC(29.79%)与EC(26.5%)排放比例相当,而轻型汽油车OC排放占有绝对优势(占75%).本文通过对比国内外部分排放源PM_(2.5)成分谱的差异,指出不同区域相同源类排放的PM_(2.5)化学组分差异较大,在应用受体模型中的化学质量平衡模型(CMB)判断受体颗粒物来源时,应基于本地的排放源成分谱,以避免较大的误差.  相似文献   

9.
本文采用在线源解析质谱监测的方式,对烟台市大气中PM_(2.5)的污染水平、成分及其来源与贡献进行了研究分析,结果表明,烟台市2017年全年颗粒物首要污染源为燃煤(23.5%),其他污染源有机动车尾气(23.1%)、生物质燃烧源(14.3%)、二次无机源(13.0%)、工业工艺源(11.4%)等。在线源解析方式操作简单,使用方便,时间分辨率高,可以为政府部门大气污染防治和重污染天气应对提供及时高效的数据支撑。  相似文献   

10.
餐饮油烟排放的污染物危害人体健康,餐饮源已成为城市环境PM_(2.5)的重要来源之一。文章对餐饮源排放PM_(2.5)污染特征的研究进行了综述,包括餐饮源对城市大气环境中PM_(2.5)的贡献、餐饮源排放PM_(2.5)的时空分布特征、化学特性、排放量的估算;初步总结了影响餐饮源PM_(2.5)排放特征的多种因素;分析了餐饮源PM_(2.5)污染的健康效应。该文在汇总国内外研究的基础上,对餐饮源PM_(2.5)的研究前景进行了展望。  相似文献   

11.
天津市道路环境大气颗粒物水溶性无机离子分析   总被引:2,自引:1,他引:1  
大气颗粒物,尤其是其中的水溶性无机离子,对人体危害很大.天津市大气污染中机动车尾气污染相对较高,为探究不同道路类型下水溶性无机离子的污染特征,于2015年4~5月对天津市四类道路类型分别进行大气颗粒物PM_(2.5)和PM_(10)采样及水溶性离子组分分析,并运用皮尔森相关性分析、水溶性离子比值关系分析及主成分分析方法进行探讨.结果表明,天津市水溶性无机离子主要集中在细颗粒物中,不同离子在不同道路下所占质量分数差异很大,二次污染相对较重;二次离子是水溶性无机离子的重要组成部分,在细颗粒物中含量相对较高,在PM_(2.5)中的含量是PM_(10)中的1~2倍左右;K~+、Mg~(2+)、Na~+与Ca~(2+)之间有较高的同源性;各道路PM_(2.5)和PM_(10)第一贡献因子均是燃烧和二次污染的混合源,第二贡献因子主要为扬尘与交通混合源.  相似文献   

12.
<正>向源模型法和反向受体模型法是进行城市PM_(2.5)源解析的2种方法,两者各有所长。该研究应用三维空气质量模型Weather Research and Forecasting Model with Chemistry(WRF-Chem)模型和受体模型Positive Matrix Factorization(PMF),以2014年10月为研究时段,分别对邯郸市的细微颗粒物(PM_(2.5))进行源解析。PMF模型的解析结果表明,邯郸市PM_(2.5)来源为二次源30.2%,燃煤源25.4%、金属冶炼源15.1%、机动车源14.4%、扬尘源9.8%,生物质燃烧源5.2%。应用WRF-Chem模型,Brute-Force方法解析出的结果为,在本地源贡献中,工业源贡献了49.0%,民用源11.9%、农业源9.6%、交通源3.8%和电厂源-1.5%(负值由于PM_(2.5)前体物之间的非线性反应所致)。应用源模型对二次成分(SO_4~(2-)、NO_3~-和NH_4~+)进行再解析,结果显示,燃煤源源贡献率最大,达到25.7%,其次分别为农业源(24.0%)、工业源(6.5%)、生物质源(1.8%)和机动车(0.03%)。结合2种方法得出,邯郸市的PM_(2.5)中,本地燃煤源贡献了37.1%,其次分别为金属冶炼源(18.4%)、机动车源(15.1%)、扬尘源(13.3%)、生物质燃烧源(6.2%)。  相似文献   

13.
通过大气细颗粒物实时在线源解析技术(质谱直接测量法)采集录入淮安市市区部分特征污染源排放成分谱,对淮安市大气细颗粒物进行在线源解析,获取高时间分辨的颗粒物源解析结果,分析颗粒物来源、季度变化和重污染天气的污染过程,评估形成重污染过程的污染影响因子和影响程度,为区域大气污染综合整治提供重要目标指向,同时也为淮安环境空气PM2.5重度污染实时预警与监控、大气污染源减排方案评估、污染事件监控等提供有效的在线监测技术平台.  相似文献   

14.
电厂燃煤烟尘PM2.5中化学组分特征   总被引:1,自引:1,他引:0  
采集了阳泉市具有代表性的燃煤电厂除尘器下载灰,测定了其PM_(2.5)中元素、离子及EC(元素碳)、OC(有机碳)的含量水平,对其化学组分特征进行了研究,并运用分歧系数法对阳泉与其他地区的燃煤烟尘PM_(2.5)成分谱之间的相似程度进行了比较.结果发现,阳泉市电厂燃煤锅炉排放的细颗粒物(PM_(2.5))中主要组分为SO_4~(2-)、Ca、NO_3~-、OC、EC、Al、Si、Na、Fe、Mg以及Cl~-,占PM_(2.5)总质量的57.22%;Pb在燃煤烟尘PM_(2.5)中相对富集系数最大,达到10.66~15.91,呈显著富集;无烟煤和劣质煤燃烧后烟尘的PM_(2.5)成分谱之间的分歧系数为0.072,认为这两个成分谱必定相似,与其他城市所建立的燃煤烟尘成分谱相比,阳泉市燃煤电厂PM_(2.5)的化学组分具有特异性,尤其是Ca含量明显高于国内其他地区燃煤烟尘Ca的排放.  相似文献   

15.
郑秀亮 《环境》2020,(4):56-57
正全球领先的大气PM_(2.5)在线源解析质谱系统、多物种高时空分辨率的走航系统、大气VOCs吸附浓缩在线监测系统、超复杂大气组分分析系统……由广州禾信仪器股份有限公司(以下简称"禾信仪器")开发的多种质谱仪器产品,在"蓝天保卫战"中对PM_(2.5)、VOCs等进行实时在线监测及分析,为大气污染防治工作提供科学指引和重要技术支撑。  相似文献   

16.
邯郸市PM_(1.0)、PM_(2.5)污染特征及在线水溶性离子分析   总被引:1,自引:1,他引:0  
对2014年12月—2015年2月邯郸市大气中PM_(1.0)、PM_(2.5)以及PM_(2.5)中的硝酸根(NO-3)、水溶性有机碳(WSOC)和硫酸根(SO2-4)进行在线监测。结果表明,PM_(1.0)中干性成分(PM_(1.0)_DRY)和包含水分的PM_(1.0)(PM_(1.0)_WET)分别占PM_(2.5)的74.0%和81.4%,PM_(1.0)为PM_(2.5)中的主要组成。利用锯齿型方法估算本地源和区域源对PM_(1.0)、PM_(1.0)~2.5、PM_(2.5)的贡献,得出区域源对PM_(1.0)的贡献为40.6%,明显高于对PM_(1.0)~2.5与PM_(2.5)贡献的32.3%和37.7%,因为PM_(1.0)直径小,在大气中存在时间较长、传输距离远。根据NO-3、WSOC、SO2-4与PM_(1.0)、PM_(1.0)~2.5的相关系数,推断NO-3、WSOC可能在PM_(1.0)生成,而SO2-4可能在PM_(1.0)~2.5中生成。  相似文献   

17.
为探讨包头城区大气PM_(2.5)污染特征及主要来源,在包头城区设立4个采样点,于2015年12月-2016年9月采集大气PM_(2.5)样品,共获得160个有效样品,分析了PM_(2.5)及其无机元素、水溶性离子、元素碳(EC)和有机碳(OC)的质量浓度和污染特征。同时采集了包头城区土壤风沙尘、建筑施工尘、道路扬尘、煤炭燃烧尘、装备制造尘和金属冶炼尘等6类污染源,建立了包头市大气PM_(2.5)排放源成分谱。应用非负主成分回归化学质量平衡(NCPCRCMB)模型分析了PM_(2.5)来源。结果表明:观测期间包头市PM_(2.5)的年均浓度为80.58μg/m3,是中国《环境空气质量标准》(GB 3095-2012)年均PM_(2.5)二级标准限值的2.3倍;大气PM_(2.5)的季节变化特征为春、夏、秋三季低冬季高,且冬季显著高于其他三季;大气PM_(2.5)主要来源于二次离子和道路扬尘(贡献率分别为34.37%和15.98%),其他污染源贡献率相对较小。  相似文献   

18.
海西城市群PM2.5中重金属元素的污染特征及健康风险评价   总被引:1,自引:2,他引:1  
采集2010~2011年海西城市群PM_(2.5)样品,用粒子激发-X射线发射技术(PIXE)方法测试样品中痕量重金属(Zn、Cu、Pb、Mn、Ni、Cr、As)的浓度,分析痕量重金属的污染特征、富集程度和来源,并进行重金属对人体健康风险的评价.结果表明,PM_(2.5)中重金属总浓度的时空分布特征与PM_(2.5)的不一致,这与PM_(2.5)的某些主要贡献源(如建筑尘和扬尘等)并非痕量重金属的贡献源有关.PM_(2.5)中Zn、Cu、Pb、Mn、Ni、Cr、As等重金属的EF值均高于10,呈明显的人为源富集现象.主成分-多元线性回归(PCA-MLR)解析结果显示,PM_(2.5)中痕量重金属主要有3种来源,即燃煤和机动车尾气(70.59%)、混合源(燃煤、燃油和冶炼行业,17.55%)以及其他工业源(11.86%).健康风险评价结果显示,PM_(2.5)中致癌重金属(Ni、Cr、As)的风险值高于非致癌重金属(Zn、Cu、Pb、Mn)风险值,但均低于一般可接受风险水平(10-6),说明海西城市群大气环境PM_(2.5)中重金属未对人体健康造成危害.  相似文献   

19.
利用中流量空气颗粒物采样器在武汉市青山区进行连续采样,分析了2013年冬季大气PM_(2.5)的质量浓度,并采用ICP-AES方法研究了样品中19种金属元素的组成和特征。结果表明,PM_(2.5)质量浓度为47~353μg/m~3,参照《环境空气质量标准》(GB 3095-2012)中的二级标准,其中88.6%的样品质量浓度超标;富集因子分析结果表明Ca、Cu、Pb、Zn、Cd、Ni、Mn、Ti、V、As和Hg在PM_(2.5)中明显富集,主要来自人类活动;运用正定矩阵因子分解法(PMF)对PM_(2.5)来源进行了解析,结果表明交通源,工业源,路面扬尘,燃煤源和建筑源是武汉市青山区冬季PM_(2.5)的主要来源。  相似文献   

20.
《环境科学与技术》2021,44(7):40-48
为完善中国典型石化园区及周边区域大气PM_(2.5)源解析数据库,探究不同功能区PM_(2.5)组成及来源差异性,文章利用单颗粒气溶胶质谱仪(SPAMS)分别采集连云港市徐圩新区生活区和石化区具有完整质谱信息细颗粒物8万个和22.9万个,并结合同期PM_(2.5)浓度和气象数据对不同功能区内PM_(2.5)质谱特征、化学组分、总体源解析及内源贡献差异性进行了系统分析。结果表明,生活区和石化区SPAMS观测点PM_(2.5)平均质谱特征表现为均以碱金属Na~+和K~+、元素碳、有机碳、硝酸盐、硫酸盐为主要特征信号;化学组分方面,各功能区PM_(2.5)均以元素碳为首要组分,其中生活区最高占比达到58.3%,左旋葡聚糖占比次之,石化区占比最高达到20.2%;各功能区PM_(2.5)均主要受到机动车尾气源的影响,石化区的工业工艺源贡献更为显著,最高占比达到43.2%;在排除外源影响条件下,石化区受工地扬尘源影响最大,PM_(2.5)月均贡献值高达7μg/m~3,工业工艺源月均贡献值最高达0.55μg/m~3,主要源于石化企业排放的挥发性有机污染物的二次转化。生活区仍受车辆尾气影响最大(2.60μg/m~3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号