首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
建立了五氟苯甲酰氯衍生-气相色谱-质谱法测定地表水中一甲基肼的方法。取200ml水样,调节后的pH为10,加入20ml衍生剂,在室温下剧烈振荡衍生1h,40ml二氯甲烷萃取10min,浓缩至1.0ml后用气相色谱-质谱联用分析。方法在5~500μg/L浓度范围内线性良好,相关系数大于0.996,方法检出限为2.67μg/L;加标水样的相对标准偏差为9.54%和8.38%;加标水样回收率为79.08%~102.96%。  相似文献   

2.
采用动态固相微萃取技术富集水样中2-异丙基-3-甲氧基吡嗪、2-异丁基-3-甲氧基吡嗪、2-MIB、β-环柠檬醛、2,4,6-三氯苯甲醚、GSM、α-紫罗酮和β-紫罗酮等8种异味有机物,并用气相色谱质谱法测定。通过优化试验条件,使方法在2. 00 ng/L~100 ng/L范围内线性良好,方法检出限为1. 0 ng/L~4. 4 ng/L。空白水样3个质量浓度水平的加标回收率为81. 0%~121%,6次测定结果的RSD为1. 7%~8. 9%。将该方法用于一水库实际水样的测定,结果 2-MIB、β-环柠檬醛、α-紫罗酮和β-紫罗酮检出,其余均为未检出。  相似文献   

3.
建立了在突发性水污染事故中定量分析水样中甲醇、丙酮、乙腈、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺等5种极性有机物的实验室和现场应急监测分析方法。采用顶空-车载气相色谱质谱法用于现场快速定性定量分析;顶空-气相色谱法用于实验室准确定量分析。通过优化顶空及气相参数,在最佳实验条件下测得顶空-气相色谱质谱法中甲醇、丙酮、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等5种化合物的检出限分别为1.0、0.06、0.5、10.0、15.0 mg/L,平行测定7次结果的相对标准偏差分别为2.1%~3.8%,加标回收率为69.4%~104%;顶空-气相色谱法灵敏度高于气相色谱质谱法,检出限分别为0.08、0.01、0.03、1.7、1.7 mg/L,平行测定7次结果的相对标准偏差分别为2.5%~4.1%,加标回收率为78.1%~116%。  相似文献   

4.
SBSE-GC/MS法测定饮用水源水中7种多氯联苯单体   总被引:2,自引:0,他引:2  
采用搅拌棒吸收萃取(SBSE)-溶剂解吸-气相色谱/质谱联用法测定饮用水源水中7种多氯联苯单体,优化了萃取和解吸条件。方法在5 ng/L~100 ng/L范围内线性良好(r≥0.979),7种多氯联苯单体的检出限为0.8 ng/L~3.4 ng/L(100 mL水样SBSE萃取2 h),加标10 ng/L时实际水样回收率为93.0%~116%。  相似文献   

5.
报道了Trap I(VOCARB 4000)柱捕集水中挥发性有机污染物的性能和条件,建立了吹扫捕集和气相色谱-质谱联用测定饮用水和地表水样中25种挥发性有机污染物的分析方法.水样的加标回收率在90%~110%之间,最低检测限在0.04~0.85μg/L之间,20μg/L的挥发性有机物标准溶液经重复6次测定,其相对标准偏差基本小于5.0%.该方法已成功地运用于饮用水和地表水中挥发性有机污染物的测定,结果令人满意.  相似文献   

6.
建立了在线富集固相萃取-超高效液相色谱串联质谱法测定水中对硝基苯酚的方法。经过滤的水样用在线固相萃取系统富集后,以氨水-甲醇系统作为流动相进行梯度洗脱,通过超高效液相色谱串联质谱仪进行检测。方法的检出限为3. 52 ng/L,回收率为91. 6%~108%,相对标准偏差为5. 5%~9. 5%。该方法可大大简化复杂的前处理过程,提高灵敏度及准确性,可用于大批量地表水中对硝基苯酚的测定。  相似文献   

7.
建立了一种用气相色谱法准确、快速测定垃圾渗出液中酚类物质的新方法。外标法定量分析 4 -甲基苯酚及苯酚。采用填装了 80~ 1 0 0目 Chromosorb WAW DCMS的玻璃填充柱 ,担体上涂渍了 2 % OV-1 7,2 .5% QF-1的固定液 ,分离酚类物质效果较好 ,线性范围为 1 0 0~ 1 50 0 mg/ L,相关系数为 0 .9996,方法回收率为 94 .7%。  相似文献   

8.
固相萃取-液相色谱-串联质谱法测定水中5种雌激素   总被引:1,自引:1,他引:0       下载免费PDF全文
建立了固相萃取-液相色谱-串联质谱组合联用技术同时测定地表水、饮用水和污水处理厂出厂水中的5种雌激素(17β-雌二醇、雌三醇、雌酮、17α-炔雌醇、己烯雌酚)的方法。水样经过全自动固相萃取仪富集,以OASIS HLB柱为萃取柱,甲醇为洗脱剂,用液相色谱-串联四极杆质谱联用仪分析定量。分别在0.5~8、5~80μg/L范围内线性良好,相关系数为0.995~0.998。17β-雌二醇、雌三醇、17α-炔雌醇的检出限均为5μg/L,雌酮与己烯雌酚的检出限为0.5μg/L。5种雌激素的纯水加标回收率为63.6%~120.2%,地表水加标回收率为59.8%~91.5%,自来水加标回收率为55.3%~92.1%,精密度为3.7%~10.7%,该方法简单、可靠,可用于水中雌激素类污染物的同时测定。  相似文献   

9.
SPE-GC-ECD法测定水体中五种硝基苯类化合物   总被引:3,自引:0,他引:3  
建立了固相萃取(SPE)-气相色谱-电子捕获检测器(GC-ECD)检测水中硝基苯类的方法。5种硝基苯类化合物的测定在一定浓度范围内线性关系良好,在高、中、低3种浓度水平下,被测物的回收率在71.6%~87.8%之间,测定结果的相对标准偏差在1.6%~9.3%之间。5种硝基苯类的方法检出限分别为0.15μg/L和0.015μg/L。结果表明,该方法适用于实际水样中硝基苯类的测定。  相似文献   

10.
采用溴化衍生-液液萃取法处理地表水,用三重四极杆气相色谱质谱联用仪测定样品中α,β-二溴丙烯酰胺,再换算成丙烯酰胺的质量浓度,该方法在20.0μg/L~500μg/L范围内线性良好,相关系数r为0.998,方法检出限为0.08μg/L。实际水样2个质量浓度水平的平均加标回收率分别为87.5%和92.2%,7次测定结果的RSD分别为9.1%和6.1%。用该方法测定黄河兰州段的黄河水和实验室自来水,结果均未检出。  相似文献   

11.
The present work provides a multi-residue analytical method for determining a selection of 20 pharmaceuticals from diverse therapeutical classes in hospital effluent wastewater. The method is based on the simultaneous extraction of the target compounds by solid phase extraction (SPE), followed by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) analysis. Using TOF-MS, accurate mass measurements within 2 ppm error were obtained for most of the pharmaceuticals studied. Empirical formula information can be obtained by this method, allowing the unequivocal identification of the target compounds in the samples. Validation studies showed that LC-TOF-MS analysis is a valuable new tool for identification and quantification of pharmaceuticals in wastewater. Recoveries, using Oasis HLB cartridges at pH 7, were higher than 75% for all pharmaceuticals, except for ranitidine, 4-methylaminoantipyrine (4-MAA), cefotaxime and omeprazole, which needed specific pH conditions for their extraction. Linearity of response over two orders of magnitude was demonstrated (r > 0.99). Matrix effects resulting in suppression of the response were observed. For most of the compounds ion suppression was less than 39%, except for metronidazole, carbamazepine 10,11-epoxide, naproxen and erythromycin, where the signal suppression was 42%, 59%, 46% and 95%, respectively. A simple and effective approach to minimize or avoid matrix interferences was the 1 : 4 dilution of the SPE extracts. Method detection limits (MDLs) and quantification limits (MQLs) ranged between 4-115 ng l(-1) and 14-384 ng l(-1), respectively. The precision of the method, calculated as relative standard deviation (RSD), ranged from 1.1-19.8% and 1.7-21.7% for intra- and inter-day, respectively. The developed analytical method was applied to the analysis of hospital effluent wastewater during a survey study. 18 of the 20 pharmaceuticals studied were detected at concentration levels of microg l(-1), reaching in some cases concentrations over 100 microg l(-1), and in the case of the analgesic and antipyretic dipyrone metabolite, higher than 1000 microg l(-1).  相似文献   

12.
水和废水中黄磷的测定   总被引:1,自引:0,他引:1  
试验了黄磷在紫外光区的吸收光谱,建立了紫外分光光度法测定水和废水中黄磷的方法.该方法不需酸化、氧化,可在萃取后直接比色测定.当样品中含有石油类干扰物质时,可用含氧化剂的酸性水溶液对萃取液进行反萃取即能将其排除.该方法灵敏,具有测定范围宽、准确度高、精密度好、操作简便等特点.  相似文献   

13.
Determination of organophosphorus fire retardants and plasticizers at trace levels in wastewater is described. In this work, microwave assisted extraction (MAE) and solid-phase microextraction (SPME) are used for sample preparation to extract and preconcentrate the analytes, followed by analysis by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) for phosphorus-specific detection. Gas chromatography coupled to time of flight mass spectrometry (GC-TOF-MS) was used to confirm the organphosphorus fire retardants in wastewater. The detection limits of organophosphorus fire retardants (OPFRs) were 29 ng L(-1) for tri-n-butyl phosphate (TnBP), 45 ng for L(-1) for tris(2-butoxyethyl)phosphate (TBEP), and 50 ng L(-1) for tris(2-ethylhexyl)phosphate (TEHP). Optimized extraction conditions were performed at 65 degrees C for 30 min and with 10% NaCl. Application of MAE during the sample preparation prior to the SPME allowed the detection of tris(2-ethylhexyl) phosphate, which has been difficult to determine in previous work. Application of the method to wastewater samples resulted in detecting 3.1 microg L(-1) P from TnBP, 5.0 microg L(-1) P from TBEP, and 4.0 microg L(-1) P from TEHP. The presence of these compounds were also confirmed by SPME-GC-TOF-MS.  相似文献   

14.
The extraction of total arsenic and selenium using hollow-fibre supported liquid membranes (HFSLMs), with specific interest in the optimal conditions for the extraction in wastewater, is reported. The extraction time, type of liquid membrane, sample and donor pH and stirring rate were optimised, and thereafter, the developed method was tested in real wastewater samples. The optimal HFSLMs adopted, after optimisation tests, comprised of Aliquat 336, 0.8 M NaOH, 200 rpm and 80 min as the extractant, stripping phase, stirring rate and reaction time, respectively. The developed method had reasonable-to-high extraction efficiencies in real wastewater samples with the final effluent recording as high as 73 and 78 % removal efficiencies for Se and As, respectively. Considering the initial concentrations found in the samples, use of this developed method could bring down the concentrations to levels admissible by the United States Environmental Protection Agency (US-EPA) and World Health Organisation (WHO).  相似文献   

15.
水中汞监测存在的问题与解决办法   总被引:4,自引:0,他引:4  
利用中日合作 (JICA)项目资金 ,对测定地表水中汞存在的主要问题 ,如水样的保存和处理 ,水样的消解 ,测汞的冷原子吸收法和原子荧光法等进行了研究。通过对 33个环境监测站的样品考核 ,发现测定结果与标准值相比 ,偏高的数据达 75 %以上。提出了用 1%H2 SO4 和 0 1%K2 Cr2 O7保存水样最好 ;高锰酸钾 -过硫酸钾消解法适用于消解含有机物、悬浮物和组成复杂的废水样 ,高锰酸钾 -硫酸消解法适用于消解被有机物轻度污染的废水 ,溴酸钾 -溴化钾消解法适用于消解地表水和含较少有机物的生活污水及工业废水。研究表明 :尤以硫酸 -高锰酸钾 -过硫酸钾消解体系消解地表水和废水效果良好。对冷原子吸收法和原子荧光法中影响汞测定的因素 ,如空白值高、干扰物的消除、载气种类和流量、反应瓶体积和气液比以及反应时间等提出了详尽的解决方法  相似文献   

16.
A simple on-line method was developed for the analysis of pharmaceuticals, pesticides and some metabolites in drinking, surface and wastewater samples. The technique is based on the use of on-line solid-phase extraction combined with liquid chromatography electrospray tandem mass spectrometry with positive electrospray ionization (LC-ESI(PI)-MS/MS). The injection of only 1 mL of filtered water sample is used with a total analysis time of 20 min, including the period required to flush the SPE cartridge with organic solvent and reconditioning the LC column. Method detection limits were in the range of 2 to 24 ng L(-1) for the compounds of interest, with recoveries from 87 to 110% in surface as well as wastewater samples. Matrix effects were observed for some compounds without exceeding more than 25%. All results displayed a good degree of reproducibility, with relative standard deviations (RSD) of less than 12% for all compounds. Moreover, at least 200 samples were analyzed without altering the performance of the pre-concentration column. This method was preferred over traditional off-line procedures because it minimizes tedious sample preparation, increases productivity and sample throughput. The analysis of various water and wastewater samples showed that caffeine, carbamazepine and atrazine could be detected in all the samples analysed and the selected compounds are always present in at least one of the sample types.  相似文献   

17.
高效液相色谱-串联质谱法测定废水中5种喹诺酮类抗生素   总被引:2,自引:0,他引:2  
建立高浓度有机废水中5种喹诺酮类抗生素的高效液相色谱-串联质谱测定方法。水样经HLB固相萃取小柱富集净化,12 ml甲醇洗脱、浓缩并加入内标溶液后,定容至1 mL待测。以C18柱为分离柱,含0.01%甲酸的甲醇-含0.01%甲酸的水溶液为流动相,目标物质在10 min内分离。在0.25~1 250 ng/mL范围内,目标物质线性关系良好(R20.99)。基质加标试验结果表明,纯水中的回收率为61.40%~91.92%,废水中的回收率为54.92%~101.87%,检出限为0.25~2.5 ng/L,方法定量限为0.36~3.99 ng/L。应用该方法对21家猪场的64份废水样品进行分析,5种喹诺酮类抗生素的检出频率为47%~95%,平均检出浓度为980~5 734 ng/L。该方法快速、准确,适用于高浓度有机废水中喹诺酮类抗生素的同时测定。  相似文献   

18.
固相萃取-气相色谱法测定水环境中邻苯二甲酸酯   总被引:3,自引:1,他引:2       下载免费PDF全文
采用固相萃取法对水样进行提取富集,气相色谱法测定水中6种邻苯二甲酸酯类有机污染物,并对方法进行了探索、优化和验证。对水体pH在固相萃取过程中对邻苯二甲酸酯萃取回收率的影响进行了研究,解决了邻苯二甲酸2-乙基己基酯和邻苯二甲酸二正辛酯回收率不高的问题。在空白水加标实验中,邻苯二甲酸酯的回收率能达到93.2%~116.3%。除此之外,还对工业废水和地表水进行了加标回收实验,获得了较高的回收率及测定精度。  相似文献   

19.
Simultaneous analysis of 11 free estrogen hormones and five conjugated estrogens in water and municipal wastewater was studied. The analytical method was developed and tested for different types of solid-phase extraction adsorbents, eluents, sample containers and storage conditions, derivatization, and matrix effects. Varian Bond Elut C-18 solid-phase extraction adsorbent cartridge was selected based on its high recoveries for both free and conjugated estrogens. Sample storage conditions, as well as selection and pretreatment of sample container materials, can affect the trace level analysis of estrogens. Silanization of glassware is observed to provide low relative standard deviation (RSD) in the analysis and less percentage loss due to contacting with sample container materials. Light exposure during the test can significantly impact the results. The derivatized samples stored at −20°C for at least 6 days showed less than 10.5% average RSD in the analysis. The recovery efficiency in clean water varies from 72% to 101% for free estrogens and 78% to 82% for conjugated estrogens. The method detection limits (MDL) for most of the compounds range from 30 to 870 ng/L using a sample volume of 200 mL. With a sample volume of 3 L, the most sensitive compound produces a MDL of 0.03 ng/L. Dilute methanol is used to wash the loaded cartridge as a cleanup step in order to remove interfering species during analysis of wastewater samples. Using the optimized analytical methods, the concentration level of free estrogens in the influent and effluent municipal wastewaters is tested.  相似文献   

20.
Highly rapid and selective vortex-assisted liquid–liquid microextraction based on solidification of organic drop has been used for determination of cobalt ion. 2-Nitroso-1-naphthol (2N1N) was used as a selective complexing agent to form stable cobalt–2N1N complex which can be extracted with 1-undecanol at a short time by the assistance of vortex agitator system followed by its determination using flame atomic absorption spectrometry. In vortex assisted, vigorous vortex stream as well as the vibrant effect of vortex system cause very fine droplets of extraction solvent to be produced and extraction occurred at a short time. Some parameters influencing the extraction process such as pH of samples, concentration of 2-nitroso-1-naphthol, extraction solvent volume, extraction time, ionic strength and surfactant addition, as well as interferences were evaluated in detail and optimum conditions were selected. At the optimum conditions, the calibration curve was linear in the range of 15 to 400 μg L?1 of cobalt ions. The relative standard deviation based on ten replicate analysis of sample solution containing 50 μg L?1 of cobalt was 3.4 %. The detection limit (calculated as the concentration equivalent to three times of the standard deviation of the blank divided by the slope of the calibration curve after preconcentration) was 5.4 μg L?1. The accuracy of the proposed method was successfully evaluated by the analysis of certified reference materials. This selective and highly rapid method was used for determination of cobalt ions in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号