首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A large number of pressurized coal gasification processes being developed propose to use venturi scrubbers for particulate removal at high pressures. Theoretical predictions based on venturi scrubber performance models indicate that particle collection efficiency will decrease severely in these high gas pressure applications.

An exploratory theoretical and experimental program was performed to study the effect of gas pressure on venturi scrubber performance. Experiments were done on a 0.47 m3/s (1000 acfm) pilot scale venturi scrubber. Particle collection performance was determined as a function of scrubber pressure drop for venturi scrubbers operating In the range of 1-10 atm total pressure. Experimental results confirmed that the particle collection efficiency of venturi scrubbers decreases for a given scrubber pressure drop as total gas pressure Is increased. To achieve the same particle collection efficiency, the pressure drop across a venturi scrubber operated at 10 atm Is about 10 times that of the same scrubber operated at 1 atm pressure.  相似文献   

2.
Droplet sizes in venturi scrubbers using water, water and detergent, and water-propan-1-ol mixtures have been measured using a stroboscopic-photographic method. Droplet sizes for water and water-detergent systems are not significantly different, although much smaller droplets are formed when water-propanol mixtures are used. The better particle collection claimed for water-detergent systems is probably due to the subsequent break-up of bubbles found in the water-detergent system into microdroplets, or better particle-droplet adherence. The classical Nukiyama-Tanasawa equation commonly used for predicting the Sauter mean diameter of droplets (and in turn, collection efficiency) in venturi scrubbers, which has surface tension as a critical parameter, is only approximately applicable to water and water-alcohol mixtures and not to water-detergent mixtures.  相似文献   

3.
Compliance with sulfur oxides standards will in many cases result in the installation of scrubbing devices. If these devices operate on an effluent gas stream containing particulate as well as sulfur oxides, simultaneous removal would be expected. Since effective simultaneous removal of particulate matter and sulfur oxides is economically desirable, it is of considerable import to characterize scrubber designs being considered as sulfur oxide absorbers as particulate control devices; especially, for fine particulate control.

Data on the fine particle collection efficiency of sulfur oxides scrubbers at two power generating stations is presented. At the first, a venturi and a turbulent contacting absorber (TCA) both with capacities of 30,000 cfm were tested. At the second, a venturi with 600,000 scfm capacity was tested. Fine particle collection efficiency was determined at three pressure drops for the TCA using a cascade impactor. Results for the TCA show high removal efficiencies. It collected more than 90% of submicron particles when the pressure drop was nearly 10 in. H20. The overall particulate removal in the TCA scrubber as determined by modified method 5 or by Brink impactor was greater than 99% when the pressure drop was greater than 6 in. H20. For both the venturi scrubber at the Shawnee Steam Plant and that at the Mystic Power Station, the collection efficiency decreased rapidly with decreasing particle size in the fine particle region.  相似文献   

4.
Collection efficiencies are shown for control of fine particles in venturi scrubbers (1) as a function of pressure drop, and (2) as a function of throat area and liquid to gas ratio. A relationship of pressure drop to throat area, gas density, throat velocity, and liquid to gas ratio is given and is used to provide a method for estimating efficiency knowing only these scrubber design parameters. The effect of charged particles and of surface active agents on collection efficiency are discussed briefly.  相似文献   

5.
Seventeen papers were presented on improved instruments and techniques for measuring the size, number, and composition of particles in process streams. Recent studies on cascade impactors, cyclones, and diffusion batteries were reported. Several papers discussed methods for making in situ particle size or mass determinations through light scattering. Systems that have been developed to determine the collection efficiency of electrostatic precipitators, scrubbers, and bag filters were described.  相似文献   

6.
A simplified equation for specifying the optimum minimum length for commercial venturi scrubber throats is presented in this paper. This theoretical correlation is derived using an optimum velocity ratio (velocity of collector droplet at end of venturi throat to velocity of gas in throat) and is a function of throat gas velocity and liquid to gas ratio. This velocity ratio establishes the minimum throat length and is based on available literature data. Predicted venturi scrubber particle collection for throats specified by this procedure compare favorably with reported commercial venturi collection efficiencies and with modeled venturi efficiencies over the practical range of venturi scrubber operation.  相似文献   

7.
A general discussion of packed scrubbers for particle collection is presented. Data on liquid entrainment separation, ammonium chloride fume collection, and clay particle collection are given.  相似文献   

8.
An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.  相似文献   

9.
Abstract

An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1 μm, the removal efficiency is greater than 80–90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is ~15.4 ± 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 μm.  相似文献   

10.
Theoretical calculations and experimental measurements show that the collection of small aerosol particles (0.05 to 5 micron diameter range) by water droplets in spray scrubbers can be substantially increased by electrostatically charging the droplets and particles to opposite polarity. Measurements with a 140 acfm two chamber spray scrubber (7 seconds gas residence time) showed an increase in the overall particle collection efficiency from 68.8% tit uncharged conditions to 93.6% at charged conditions, with a dioctyl phthalate aerosol (1.05 μm particle mass mean diameter and 2.59 geometric standard deviation). The collection efficiency for 0.3 μm particles increased from 35 to 87% when charged. During 1973–1974 a 1000 acfm pilot plant electrostatic scrubber was constructed inside a 40 ft trailer for evaluation on controlling particu-late emissions from pulp mill operations (funded by Northwest Pulp and Paper Association). Field tests performed on the particle emissions exhausting from SO2 absorption towers treating the gases from a magnesium based sulfite recovery boiler have shown particle collection efficiencies ranging from about 60 to 99% by weight, depending on the electrostatic scrubber operating conditions. Energy requirements for the University of Washington electrostatic scrubber are about 0.5 hp/1000 acfm (350 Watts/1000 acfm) including gas pressure drop, water pressure drop, and electrostatic charging of the water spray droplets and the particles.  相似文献   

11.
The exact collection mechanism of a venturi scrubber has been unknown up to this time. Photographic stop-action techniques and glass venturi scrubbers have made it possible to establish where and how particles are captured and to speculate on possible gas removal possibilities. This report extends the knowledge of pneumatic atomization which is used in gas scrubbing and many other applications by providing further information on cloud-type atomization. Cloud-type atomization which is produced by pneumatic atomization of liquid streams (not drops) results in the formation of liquid droplets which appear to be less than 10 microns in diameter. These droplets coalesce and form clouds which move as single entities. Effective overall cloud diameters are determined to be a function of the velocity of the atomizing gas stream. The effective cloud diameters start at 170 [a and increase as throat gas velocities increase from 150 ft/sec. Throat velocities and liquid inlet nozzle diameters necessary to obtain water clouds of specific effective diameters can be estimated.

These large clouds are efficient impaction targets and stop most of the particulate matter within 0.5 cm from the throat scrubbing liquid inlets. High gas absorption is expected for the clouds of droplets because turbulent gas movement can exist inside and outside the clouds and the 10 μ droplets provide exceptional surface area.  相似文献   

12.
This is the first installment of a 4-part series which will present capital and operating costs of selected air pollution control systems. The objective of the Series is to identify the individual component costs so that realistic system cost estimates can be determined for any specific application. In Part I, cost estimating procedures and curves are provided to develop the equipment costs for electrostatic pre-cipitators, venturi scrubbers, fabric filters, incinerators, and adsorbers.  相似文献   

13.
An experimental investigation has been carried out to examine the effect of scale-up on the performance of scrubbers for a wide range of operating conditions. A pilot plant with a maximum air flow rate of 400 cfm and a water flow rate of 4 gpm was used for this study. For the same operating conditions, the performance of 1.5 in. orifice type scrubber was found better than that of 1.0 in. size. The results were categorized according to the size of the particles, classed as large (1.5 to 3.5μ diam), medium (0.6 to 1.5μ diam) and small (less than O.6μ diam). Although the magnitude of improvement of the collection efficiency was dependent on the operating conditions, differences to the extent of 20% were obtained. The improvement of the collection efficiency for the larger scrubber was found to be due to the influence of the main stream turbulence.  相似文献   

14.
Dust collection efficiency data were analyzed to determine better operating conditions for a two-dimensional circulating granular bed filter (CGBF). The dust collection efficiency in the granular bed was affected by the following operating parameters: the louver angle, the solids mass flow rate, and the particle size of the bed material. Experimental results showed that higher dust collection efficiency occurs when the solids mass flow rates were 20.34 +/- 0.24, 21.50 +/- 0.11, and 30.51 +/- 0.57 g/sec at louver angles of 45 degrees, 30 degrees, and 20 degrees, respectively. Optimal dust collection efficiency peaked with a louver angle of 30 degrees. Average particle sizes of bed material by sieve diameters (microm) of 795 microm had higher dust collection efficiency than the average collector particle size of 1500 microm. Dust collection efficiency is influenced by bed material attrition phenomenon, causing dust collection efficiency to decrease rapidly. The dust collection efficiency analysis not only found the system free of design defects but also assisted in the operation of the two-dimensional CGBF system.  相似文献   

15.
Abstract

Dust collection efficiency data were analyzed to determine better operating conditions for a two-dimensional circulating granular bed filter (CGBF). The dust collection efficiency in the granular bed was affected by the following operating parameters: the louver angle, the solids mass flow rate, and the particle size of the bed material. Experimental results showed that higher dust collection efficiency occurs when the solids mass flow rates were 20.34 ± 0.24, 21.50 ± 0.11, and 30.51 ± 0.57 g/sec at louver angles of 45°, 30°, and 20°, respectively. Optimal dust collection efficiency peaked with a louver angle of 30°. Average particle sizes of bed material by sieve diameters (μm) of 795 μm had higher dust collection efficiency than the average collector particle size of 1500 μm. Dust collection efficiency is influenced by bed material attrition phenomenon, causing dust collection efficiency to decrease rapidly. The dust collection efficiency analysis not only found the system free of design defects but also assisted in the operation of the two-dimensional CGBF system.  相似文献   

16.
The application of air pollution control devices requires the prediction of overall collection efficiency from the particle size distribution of the dust and the fractional efficiency of the air pollution control device. The cumulative particle size distribution of dust resulting from industrial processes can usually be represented by a straight line on logarithmic probability paper or a log normal function. The fractional efficiency curves of many air pollution control devices such as cyclones or wet scrubbers can also be adequately represented by a log normal function. Only two parameters are required to define a log normal function, a median diameter and a geometric standard deviation. Both of these can easily be obtained from a plot on logarithmic probability paper. The overall collection efficiency has been found to be Very simply related to the four parameters required to define the log normal functions representing the particle size distribution and the collector fractional efficiency. These four parameters are: the mass median diameter and the geometric standard deviation of the dust size distribution, the cut diameter (50% efficiency diameter), and geometric standard deviation of collector fractional efficiency curve. Using this relationship the prediction of overall collection efficiency is greatly simplified with no loss of accuracy.  相似文献   

17.
The overall particle collection efficiencies of spray scrubbers using monodisperse droplets of 100,500, and 1000 microns diameter were calculated for the cases of evaporating and condensing droplets. The properties of the gas at the inlet to the spray scrubber were maintained constant at 150°F, 100% relative humidity, and 1 atmosphere pressure. At the liquid entrance to the spray scrubber, the water droplet temperature was 50° F for the condensing case and 180° F for the evaporating case. The liquid to gas flow rate ratio for all the calculations was held constant at 4 gal/1000 acf. The gas velocity in the co-current spray tower was 1 ft/sec in the downwind direction. The calculation results show that for the particles in the 0.01 to 10 Mm diameter range, the overall spray scrubber particle collection efficiency is greater with the cooler 50°F water (condensing case) than with the warmer 180°F water (evaporating case). The effect of diffusiophoresis and thermophoresis is noticeable for all the water droplet sizes considered, but is more significant for the larger water droplets. This greater effect for the larger water droplets compared to the smaller droplets is due to the longer existence of the temperature and water vapor concentration gradients between the water droplets and the surrounding gas.  相似文献   

18.
Choi KI  Lee DH 《Chemosphere》2007,66(2):370-376
To further understand the effects of wet scrubbers on PCDD/DF levels, it was measured the concentrations of PCDD/DF, dust, and other gaseous pollutants at both the inlets and the outlets of seven wet scrubbers. As a result, the concentrations of PCDD/DF at the inlets and outlets of the wet scrubbers ranged from 0.2 to 37.4, and 0.8 to 6.0 ng TEQ N m-3, respectively. With the exceptions of wet scrubbers F and G, the PCDD/DF levels decreased by and large in most wet scrubbers. It was thought that their relatively high removal efficiencies were more increased with heavier loads of dust and particle-bound PCDD/DF. On the other hand, it was also surveyed the increase of gaseous PCDD/DF in wet scrubber, where the total level of PCDD/DF was decreased. However, it was not sure whether it had been resulted from the thermal adsorption/desorption phenomenon between packing materials and emission gases or not. At the very least, however, although there still remains an unexplained aspect for the increase of gaseous PCDD/DF, it is clear that wet scrubbers can be sufficiently applied to remove PCDD/DF to a certain extent, if only removal efficiencies for the particle loads are high, and if a significant part of the PCDD/DF at the inlets is particle associated.  相似文献   

19.
To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs.  相似文献   

20.
为了进一步提高电除尘器的收尘效率,尤其是对高比电阻粉尘的收尘效率,依据非稳态静电收集理论,对影响电除尘器粉尘收集性能各项因素的作用程度及机理进行了进一步研究。实验研究了粉尘收尘效率与不同比电阻粉尘的最优极间距、最优工作电压、粉尘层厚度和比电阻之间的相互关系。研究结果表明,随着极间距的增加,对应比收尘极面积,对于不同比电阻粉尘的收尘效率的增加幅度是不同的,其中高比电阻粉尘的收尘效率增加的趋势更加显著;粉尘比电阻越高,所对应的最优极间距越大,宽间距电除尘器对捕集高比电阻粉尘具有一定优越性;在最优极间距条件下,粉尘比电阻越高,其所对应的最优工作电压越小;相对于正常比电阻粉尘,随极板沉积粉尘层厚度的增加,高比电阻粉尘的最佳收尘效率所对应的最优工作电压升高幅度较大,而且最优工作电压所对应的收尘效率下降显著。随粉尘比电阻的增大,电除尘器收尘效率逐渐降低,特别是当粉尘比电阻大于1011Ω.cm后,粉尘收尘效率显著下降。研究结果与非稳态静电收尘理论提出的观点相吻合,有助于透彻理解电场结构和运行参数与粉尘收集性能的关系,特别是对于今后研发提高高比电阻粉尘收集性能的针对性技术措施具有指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号