首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last decade the habit of smoking the hubbly-bubbly has increased sharply in many regions, including Europe, North America and Australia. Jordan is considered as having one of the highest consumptions of hubbly-bubbly in the world with respect to the general population. Our investigation was initiated due to the increasing trend of cancer cases in the last 10 years. The aim of this study was to determine the radioactive content in tobacco products available in the Jordanian market together with the related supplies. This study showed that all 13 samples investigated contained one or more radionuclides, from 210Pb, 40K, 137Cs, 238U, and 226Ra. Most of the samples contained natural potassium 40K and uranium 238U, lead 210Pb was found in three samples, while radium 226Ra was present only in one sample. Five samples contained the anthropogenic 137Cs. The estimated daily intake of U was found in the range between 4.4 and 115.8?µg per day (0.05–1.43 Becquerel (Bq) per day 238U), with geometric mean of 17.3?µg per day (0.2?Bq per day 238U). The geometric mean of U daily intake found represents 25% of the reference dose (RfD) value, where the highest determined U content represents 165% of the RfD value. This study demonstrated that a water vessel of hubbly-bubbly trapped less than 1.5% of the total U in Ma’assel samples. It is misleading to the public to indicate that a water vessel serves as an active filter for toxic and radiotoxic elements.  相似文献   

2.
利用高纯锗γ能谱分析仪测量中国华东某铀矿区附近河流沉积物的放射性核素比活度,计算γ辐射吸收剂量率(D)、有效镭浓度(Ra_(eq))、外照射指数(H_(ex))、内照射指数(H_(in))、年有效剂量当量(AEDE(室内和室外))和年性腺剂量当量(AGDE)等放射性参数,并开展沉积物的放射性危害评估,最后通过Pearson线性系数确定放射性核素比活度之间的相关性。结果表明,河流沉积物中放射性核素~(238)U、~(226)Ra、~(232)Th和40K的平均比活度分别为51.55、37.32、57.63和756.86 Bq·kg~(-1),除~(226)Ra外,其他放射性核素的比活度均高于中国平均值;距离污染区较远或存在河流稀释作用的区域,沉积物的天然放射性核素处于正常水平,作为建筑材料使用时比活度不存在超标;放射性核素~(238)U、~(226)Ra和~(232)Th之间存在显著相关性。  相似文献   

3.
Uran in Wässern     
The study presents 172 measurements of the uranium238U and234U isotopes in ground water and 21 measurements of these substances in the rivers of Eastern Germany. The uranium concentration in the ground water ranged from under 0.1 mBq/l to over 1000 mBg/l with a mean of 12 mBq/l. The respective activity relationships of234U/238U ranged from 0.85 to 12.6 with a mean of 1.66. A comparison of these values with those in the literature demonstrates an agreement with more recent measurements obtained from water in Thuringia and Saxony which were seen to have a mean value of 19 mBq/l. The activity relationships of234U/238U which were seen to be substantially over the equilibrial value of 1.0 and which were found in a quite high proportion of the samples must be taken into consideration when evaluating these. The measurements of river water demonstrated values for the Elbe river which are related to the periods of extensive uranium mining in Saxony and Thuringia. Measurements performed in the catchment regions going into the Baltic Sea revealed substantially higher values than would be expected from the distribution of uranium in these areas. A number of reasons are discussed here in an attempt to explain these findings.  相似文献   

4.
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1.  相似文献   

5.
Voluminous stockpiles of phosphogypsum (PG) generated during the wet process production of phosphoric acid are stored at many sites around the world and pose problems for their safe storage, disposal, or utilization. A major concern is the elevated concentration of long-lived 226Ra (half-life = 1,600 years) inherited from the processed phosphate rock. Knowledge of the abundance and mode-of-occurrence of radium (Ra) in PG is critical for accurate prediction of Ra leachability and radon (Rn) emanation, and for prediction of radiation-exposure pathways to workers and to the public. The mean (±SD) of 226Ra concentrations in ten samples of Jordan PG is 601 ± 98 Bq/kg, which falls near the midrange of values reported for PG samples collected worldwide. Jordan PG generally shows no analytically significant enrichment (<10%) of 226Ra in the finer (<53 μm) grain size fraction. Phosphogypsum samples collected from two industrial sites with different sources of phosphate rock feedstock show consistent differences in concentration of 226Ra and rare earth elements, and also consistent trends of enrichment in these elements with increasing age of PG. Water-insoluble residues from Jordan PG constitute <10% of PG mass but contain 30–65% of the 226Ra. 226Ra correlates closely with Ba in the water-insoluble residues. Uniformly tiny (<10 μm) grains of barite (barium sulfate) observed with scanning electron microscopy have crystal morphologies that indicate their formation during the wet process. Barite is a well-documented and efficient scavenger of Ra from solution and is also very insoluble in water and mineral acids. Radium-bearing barite in PG influences the environmental mobility of radium and the radiation-exposure pathways near PG stockpiles.  相似文献   

6.
Radionuclides from the U and Th natural series are present in alkaline rocks, which are used as feedstock in Brazil for the production of raw phosphoric acid, which can be considered as a NORM (naturally occurring radioactive material). As a result of the purification of raw phosphoric acid to food-grade phosphoric acid, two by-products are generated, i.e., solid and liquid wastes. Taking this into account, the main aim of this study was to evaluate the fluxes of natural radionuclide in the production of food-grade phosphoric acids in Brazil, to determine the radiological impact caused by ingestion of food-grade phosphoric acid, and to evaluate the solid waste environmental hazards caused by its application in crop soils. Radiological characterization of raw phosphoric acid, food-grade phosphoric acid, solid waste, and liquid waste was performed by alpha and gamma spectrometry. The 238U, 234U, 226Ra, and 232Th activity concentrations varied depending on the source of raw phosphoric acid. Decreasing radionuclides activity concentrations in raw phosphoric acids used by the producer of the purified phosphoric acid were observed as follows: Tapira (raw phosphoric acid D) > Catal?o (raw phosphoric acids B and C) > Cajati (raw phosphoric acid A). The industrial purification process produces a reduction in radionuclide activity concentrations in food-grade phosphoric acid in relation to raw phosphoric acid produced in plant D and single raw phosphoric acid used in recent years. The most common use of food-grade phosphoric acid is in cola soft drinks, with an average consumption in Brazil of 72 l per person per year. Each liter of cola soft drink contains 0.5 ml of food-grade phosphoric acid, which gives an annual average intake of 36 ml of food-grade phosphoric acid per person. Under these conditions, radionuclide intake through consumption of food-grade phosphoric acid per year per person via cola soft drinks is not hazardous to human health in Brazil. Considering these annual additions of 238U, 226Ra, 232Th and 40K, and since these radionuclide should be homogeneously distributed in the upper 10 cm of soils with an assumed apparent density of 1.5 g/cm3, a maximum increase of 0.19 ± 0.03 Bq kg−1 of soil is expected for 238U and 234U. Thus, the addition of solid waste as phosphate fertilizers to Brazilian agricultural soils does not represent a hazard to the ecosystem or to human health.  相似文献   

7.
Building materials are potential sources of radiation, which represents a risk factor for human disease including cancer. In this work, the natural radioactivity due to the presence of 238U, 226Ra, 232Th and 40K in different painting oxides has been measured using gamma spectrometry with a Hyper Pure germanium detector. The concentrations of the heavy metals (Cd, Co, Mn, Pb, Ni, Sr, Rb, Cr, Cu and Zn) were determined by atomic absorption spectrometry in order to investigate their possible correlation with radioactive elements. The activity concentrations of 238U, 226Ra, 232Th and 40K ranged from 15 ± 0.75 to 126 ± 14, 2.35 ± 0.09 to 72.96 ± 1.96, 1.76 ± 0.31 to 12.88 ± 0.7 and 2.26 ± 0.09 to 200 ± 3.34 Bq kg−1, respectively. The calculated radium-equivalents were lower than values recommended for construction materials (370 Bq kg−1). The absorbed dose rates due to the natural radioactivity of the investigated samples ranged from 8.11 ± 0.24 to 68.46 ± 4.20 nGy/h. Also, the results revealed that some heavy metals (Cd, Co, Mn and Rb) were correlated with 238U, 226Ra, 232Th or 40K.  相似文献   

8.
The scientific background information describing the occurrence, measurement, health effects, treatment technology, risk assessment and economic consequences of the presence of naturally occurring radionuclides in drinking water are described for 60,000 public drinking water supplies. The relevant data for the occurrence of radium, uranium and radon in drinking water supplies are discussed and analysed. Radon is of importance because it is released in the process of taking showers and baths and in washing dishes and clothes. Its progeny is then inhaled, leading to the risk of lung cancer. Radium and uranium can both cause bone cancer. The range of average occurrence of natural radioactivity in drinking water is as follows:226Ra, 0.3 to 0.8 pCi L–1;228Ra, 0.4 to 1.0 pCi L–1; uranium, 0.3 to 2.0 pCi L–1 and222Rn, 500 to 600 pCi L–1. The estimated lifetime risks due to the mean groundwater concentrations of naturally occurring radionuclides are:226Ra and228Ra, 1.0 10–5; uranium, 2.0 × 10–6 and radon, 4.0 × 10–4. The cost to reduce total radium levels to 5.0 pCi L–1 is about $9 million. An equivalent expenditure would be required to reduce radon levels to about 4,000 pCi L–1, or uranium levels to about 100 pCi L–1. The problem of maximizing the total mortality and the reduction per unit dollar outlay per unit dollar cost for the uranium/radon case is examined.The thoughts and ideas expressed in this paper are those of the authors and are not necessarily those of the US Environmental Protection Agency.This paper is published as a contribution to discussion on this problem and not as a paper providing new research data.  相似文献   

9.
Uranium is a naturally occurring radioactive element which may cause toxicological or radiological hazards to the public if present in drinking water. This study reports the quantification of uranium in groundwater of major towns of the district Fatehabad, Haryana, India. Uranium concentrations ranged between 0.3 and 48 μg L?1. In 22% of the groundwater samples, uranium concentrations were higher than the World Health Organization maximum permissible limit of 30 µg L?1. The radiological dose for males was found to be in the range of 4.8?×?10?4–7.1?×?10?2 mSv y?1 and for females 3.5?×?10?4–5.2?×?10?2 mSv y?1. The results showed that due to the ingestion of groundwater in the study area, radiological cancer risk is in the range of 9.1?×?10?7–1.3?×?10?4, lower than the risk limit. Uranium ingestion from groundwater varied from 0.02 to 3.5 µg kg?1 day?1, which is within acceptable limit.  相似文献   

10.
North Derbyshire is designated a Radon Affected Area by the National Radiological Protection Board of Great Britain since more than 1% of the housing stock is estimated to have radon levels in excess of the 200 Bq m-3 Action Level. Enhanced radon emissions associated with geological faults make knowledge of their position important in relation to any potential residential or industrial development. A general survey of radionuclides present in the soils of north Derbyshire and their relationship to the underlying geology highlighted the difficulty of identifying the position of geological faults in the field. Using gamma-ray spectroscopy of soil samples the activity of three 238U decay series radionuclides (226Ra, 214Pb and 214Bi), which were taken as evidence of the presence of 222Rn which occurs in the same decay series, was measured to indicate the position of a fault by enhanced activity. The results also provided some evidence of the source of radon emitted at the fault. A comparison of this methodology with the more conventional soil gas analysis method is made.  相似文献   

11.
Uranium traces were measured by laser fluorimeter in groundwater samples collected from four districts of Rajasthan state in India. The average values of uranium concentration in groundwater in Sri Ganganagar, Hanumangarh, Churu, and Sikar districts were determined to be: 57, 50, 40, and 21 µg L?1, respectively. These recorded values were compared with the maximum contamination levels recommended for drinking water by various health and environmental protection agencies. The associated age-dependent radiation dose is estimated by taking the prescribed water intake values of different age groups. The average cancer mortality and morbidity risks are calculated to be 5.6 × 10?5 and 8.8 × 10?5 respectively, indicate that the probability of carcinogenic risks is negligible. About half (49%) of the analyzed samples showed hazard quotient > 1.0, indicating significant risk due to chemical toxicity of uranium.  相似文献   

12.
Residue concentrations of polybrominated diphenyl ethers (PBDEs) in different kinds of samples including consumer products, indoor dust, sediment and fish collected from two e-waste recycling sites, and some industrial, urban and suburban areas in Vietnam were determined to provide a comprehensive assessment of the contamination levels, accumulation pattern, emission potential and human exposure through dust ingestion and fish consumption. There was a large variation of PBDE levels in plastic parts of obsolete electronic equipment (from 1730 to 97,300 ng/g), which is a common result observed in consumer plastic products reported elsewhere. PBDE levels in indoor dust samples collected from e-waste recycling sites ranged from 250 to 8740 ng/g, which were markedly higher than those in industrial areas and household offices. Emission rate of PBDEs from plastic parts of disposed electronic equipment to dust was estimated to be in a range from 3.4 × 10?7 to 1.2 × 10?5 (year?1) for total PBDEs and from 2.9 × 10?7 to 7.2 × 10?6 (year?1) for BDE-209. Some fish species collected from ponds in e-waste recycling villages contained elevated levels of PBDEs, especially BDE-209, which were markedly higher than those in fish previously reported. Overall, levels and patterns of PBDE accumulation in different kinds of samples suggest significant emission from e-waste sites and that these areas are potential sources of PBDE contamination. Intakes of PBDEs via fish consumption were generally higher than those estimated through dust ingestion. Intake of BDE-99 and BDE-209 through dust ingestion contributes a large proportion due to higher concentrations in dust and fish. Body weight normalized daily intake through dust ingestion estimated for the e-waste recycling sites (0.10–3.46 ng/day/kg body wt.) were in a high range as compared to those reported in other countries. Our results highlight the potential releases of PBDEs from informal recycling activities and the high degree of human exposure and suggest the need for continuous investigations on environmental pollution and toxic impacts of e-waste-related hazardous chemicals.  相似文献   

13.
People are exposed to ionizing radiation from the radionuclides that are present in different types of natural sources, of which phosphate fertilizer is one of the most important sources. Radionuclides in phosphate fertilizer belonging to 232Th and 238U series as well as radioisotope of potassium (40K) are the major contributors of outdoor terrestrial natural radiation. The study of alpha activity in fertilizers, which is the first ever in West Bengal, has been performed in order to determine the effect of the use of phosphate fertilizers on human health. The data have been compared with the alpha activity of different types of chemical fertilizers. The measurement of alpha activity in surface soil samples collected from the cultivated land was also performed. The sampling sites were randomly selected in the cultivated land in the Midnapore district, which is the largest district in West Bengal. The phosphate fertilizer is widely used for large agricultural production, mainly potatoes. The alpha activities have been measured using solid-state nuclear track detectors (SSNTD), a very sensitive detector for alpha particles. The results show that alpha activity of those fertilizer and soil samples varies from 141 Bq/kg to 2,589 Bq/kg and from 109 Bq/kg to 660 Bq/kg, respectively. These results were used to estimate environmental radiation exposure on human health contributed by the direct application of fertilizers.  相似文献   

14.
137Cs in the marine environment mainly originates from fallout of atmospheric nuclear weapon tests, accidental releases from nuclear facilities, and from the Chernobyl accident. After the latter accident, many studies have been carried out in Turkey. The objective of this study is to assess the spatial distribution of 137Cs in the coastal marine environment of the Aegean Sea.

The concentrations of 137Cs in sediment, sea water, mussel (Mytilus galloprovincialis), and fish samples collected from the coast of the Aegean Sea at Izmir Bay and near Didim (Akbük) have been monitored for seasonal variability by the means of gamma spectroscopy: they vary between 0.10 ± 0.01 and 1.5 ± 0.3 Bq kg?1, 1.3 ± 0.1 and 4.3 ± 0.4 Bq m?3, <0.2 and 1.3 ± 0.3 Bq kg?1, and 0.20 ± 0.03 and 1.8 ± 0.3 Bq kg?1, respectively.  相似文献   

15.

Activity levels of natural and artificial radionuclides and content of ten heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn and Hg) were investigated in 41 soil samples collected from Toplica region located in the south part of Serbia. Radioactivity was determined by gamma spectrometry using HPGe detector. The obtained mean activity concentrations ± standard deviations of radionuclides 226Ra, 232Th, 40K and 137Cs were 29.9 ± 9.4, 36.6 ± 11.5, 492 ± 181 and 13.4 ± 18.7 Bq kg−1, respectively. According to Shapiro–Wilk normality test, activity concentrations of 226Ra and 232Th were consistent with normal distribution. External exposure from radioactivity was estimated through dose and radiation risk assessments. Concentrations of heavy metals were measured by using ICP-OES, and their health risks were then determined. Enrichment by heavy metals and pollution level in soils were evaluated using the enrichment factor, the geoaccumulation index (Igeo), pollution index and pollution load index. Based on GIS approach, the spatial distribution maps of radionuclides and heavy metal contents were made. Spearman correlation coefficient was used for correlation analysis between radionuclide activity concentrations and heavy metal contents.

  相似文献   

16.
Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m3 (mean = 197 Bq/m3). The results showed that the limit of 100 Bq/m3 established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m3 established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3–10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.  相似文献   

17.
Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l?1) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3) 2 2? ] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.  相似文献   

18.
The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m3, with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m3); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m3. The average concentrations of unattached radon were lower than 148 Bq/m3 (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.  相似文献   

19.
Uranium is a very toxic and radioactive element. Removal of uranium from wastewaters requires remediation technologies. Actual methods are costly and ineffective when uranium concentration is very low. Little is known about the enhancement of sorption of uranyl ions by phosphate ions on aluminosilicates. Here, we studied sorption of uranyl acetate on red clay in the presence of phosphates. The concentration of U(VI) ranged 0.0001–0.001 mol/L, whereas the concentration of PO4 3? was constant at 0.0001 mol/L. We designed a new method for the analysis of ternary surface complexes. We observed for the first time a remarkable improvement of U(VI) sorption on red clay under the influence of phosphates. We also found that at least two different ternary surface complexes U(VI)–phosphate–clay are formed in the sorbent phase. The complexation of UO2 2+ cations by phosphate ligands in the sorbent phase was confirmed by the X-ray photoelectron spectra of U 4f electrons.  相似文献   

20.
Sea water and fish tissue samples were collected from nine sampling stations from the Great Bitter and El Temsah lakes in the Suez Canal and analysed for polycyclic aromatic hydrocarbon (PAH). The compositions of PAH determined in the dissolved fraction of sea water were measured in order to use them as chemical markers for identifying different sources of PAH pollution in this region. PAHs determined in fish tissues were measured for comparison with human health standards as consumption. The total mean PAHs concentrations in the sea water samples ranged from 0.28 to 39.57 μg l?1 with an overall mean of 10.78 and 12.38 μg l?1 for El Temsah and Bitter Lakes water, respectively. Total PAHs fractions recorded in muscle tissues of all different Osteicthyes fishes collected from Great Bitter lakes ranged from 5.8 to 218.5 μg g?1 with an overall mean of 57.98 μg g?1 during all seasons. However, they ranged from 68 to 623 μg g?1 with an overall mean of 87.69 μg g?1 recorded in El Temsah lake during four seasons (2003–2004). Benzo(a)pyrene was the most dominant PAHs found in the sea water samples from both lakes with an average concentration of 3.8 μ g l?1. Dibenzo(a,h)anthracene (DBA) was the most dominant PAHs recorded in fish samples. A maximum of 533 μg g?1 of DBA was recorded in Dahbana sp. collected from Bitter lakes during January 2004. However, a maximum of 68.7 μ g g?1 was recorded in Liza carinata species collected from El Temsah lake during July, 2004. The simultaneous occurrence of isomer ratios PHE/ANT<10 for all stations indicated that the major PAH input to water was from combustion of fossil fuel (pyrolytic source). The average ratios were 1.21 and 12.9 during winter (January 2004) and 4.3 and 8.63 during spring (April 2004) for all water samples of Great Bitter lakes and El Temsah lake, respectively. In addition, the present data demonstrate that PAHs from fossil fuel sources (MW<178) were the least significant source of PAHs in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号