首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
Low-level liquid borate wastes have been immobilized with paraffin wax using a concentrate waste drying system (CWDS) in Korean nuclear power plants. The possibility for improving chemical durability of paraffin waste form was suggested in this study. A small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form. The influence of LDPE on the leaching behavior of waste form was investigated by performing leaching test according to ANSI/ANS-16.1 procedure during 325 days. It was observed that the leaching of nuclides immobilized within paraffin waste form made a marked reduction although little content of LDPE was added to waste form. The acceptance criteria of paraffin waste form associated with leachability index (LI) and compressive strength after the leaching test were fully satisfied with the help of LDPE.  相似文献   

2.
利用草酸钴废料协同浸出水钴矿中的钴和铜,考察了工艺条件对浸出率的影响,并推荐了一种二段浸出及后续生产草酸钴的工艺流程。实验结果表明,在草酸钴废料与水钴矿的质量比为20%、反应时间为120 min、反应温度为85 ℃、初始H2SO4浓度为1.00 mol/L、液固比为4 mL/g的最佳工艺条件下,钴和铜的浸出率分别达到98.82%和96.24%。该工艺应用于水钴矿的还原浸出,在回收利用草酸钴废料的同时,降低了还原剂的消耗,且对浸出液后续处理工艺无影响。  相似文献   

3.
A study is undertaken to determine the waste immobilization performance of low-level wastes in cement-clay mixtures. Liquid low-level wastes are precipitated using chemical methods, followed by solidification in drums. Solidification is done using cementation processes. Long-term leaching rates of the radionuclides are used as indicators of immobilization performance of solidified waste forms. In addition to evaluating the effects of kaolin clay on the leaching properties of the cemented waste forms, the effect of addition of kaolin on the strength of the cemented waste form is also investigated. The long term leaching tests show that inclusion of kaolin in cement reduces the leaching rates of the radionuclides significantly. However, clay additions in excess of 15 wt.% causes a significant decrease in the hydrolytic stability of cemented waste form. It is found that the best waste isolation, without causing a loss in the mechanical strength, is obtained when the kaolin content in cement is 5%.  相似文献   

4.

Tannic acid–acetic acid is proposed as novel and green chemicals for cobalt and lithium recycling from spent lithium-ion batteries through a leaching process. The synergism of both acids was documented through batch and continuous studies. Tannic acid promotes cobalt dissolution by reducing insoluble Co3+ into soluble Co2+, while acetic acid is critical to improve the dissolution and stabilize the metals in the pregnant leach solution. Based on batch studies, the optimum conditions for metal recovery at room temperature are acetic acid 1 M, tannic acid 20 g/L, pulp density 20 g/L, and stirring speed 250 rpm (94% cobalt and 99% lithium recovery). The kinetic study shows that increasing temperature to 80 °C improves cobalt and lithium recovery from 65 to 90% (cobalt) and from 80 to 99% (lithium) within 4 h at sub-optimum condition (tannic acid 10 g/L). Kinetic modeling suggests the leaching process was endothermic, and high activation energy indicates a surface chemical process. For other metals, the pattern of manganese and nickel recovery trend follows the cobalt recovery trend. Copper recovery was negatively affected by tannic acid. Iron recovery was limited due to the weak acidic condition of pregnant leach solution, which is beneficial to improve leaching selectivity.

  相似文献   

5.
From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place.  相似文献   

6.
The development of predictive models for the long term evolution of nuclear waste glass requires the complete knowledge of the glass dissolution at the laboratory scale. A new approach was developed to determine the initial reaction during the first steps of experience, a new concept was developed, based on the combination of dynamic leaching test and the characterization of the altered materials. With this experimental set-up it is possible to follow in real time the glass alteration process at a fine temporal scale. The results put in evidence a singular behaviour of the lanthanide, shown by a concentration peak of La, Nd and Ce after 2 h and a quick decrease of their concentration measured on line in the solution during the leaching test. This fact is directly linked to the development of an interphase (altered layer which differs from the initial solid by its texture, structure and chemical composition) at the interface of the glass surface and the leaching solution. This work is an attempt to integrate the formation of the alteration products (here the interphase) during leaching into the dissolution mechanisms of a nuclear waste glass. A model is proposed and discussed.  相似文献   

7.
Bioleaching of spent lithium ion secondary batteries, containing LiCoO2, was attempted in this investigation. The present study was carried out using chemolithotrophic and acidophilic bacteria Acidithiobacillus ferrooxidans, which utilized elemental sulfur and ferrous ion as the energy source to produce metabolites like sulfuric acids and ferric ion in the leaching medium. These metabolites helped dissolve metals from spent batteries. Bio-dissolution of cobalt was found to be faster than lithium. The effect of initial Fe(II) concentration, initial pH and solid/liquid (w/v) ratio during bioleaching of spent battery wastes were studied in detail. Higher Fe(II) concentration showed a decrease in dissolution due co-precipitation of Fe(III) with the metals in the residues. The higher solid/liquid ratio (w/v) also affected the metal dissolution by arresting the cell growth due to increased metal concentration in the waste sample. An EDXA mapping was carried out to compare the solubility of both cobalt and lithium, and the slow dissolution rate was clearly found from the figures.  相似文献   

8.
The leaching of lead from cement-based solidified waste forms mixed at different water/cement ratios was studied by conducting equilibrium and semi-dynamic leaching tests using deionized water and sodium chloride solutions. The results suggest that leaching of the primary constituents of the cement (calcium, silicon and sulfate) is controlled by solubility equilibria, with increased leaching into chloride solutions due to ionic strength effects. The original porosity of the waste forms increased with water/cement ratio and chloride solutions further increased it as a result of decalcification. Lead leaching was generally low, and appears to be a transport-controlled process, such that leaching correlates positively with porosity.  相似文献   

9.
Two types of leaching tests were performed on the bottom ash from municipal solid waste incinerators. A short-term batch test specified by the America Nuclear Society (ANS) and long-term column tests with acetic acid (pH 5.2) as leaching solution were used to evaluate copper leachability. The Cu leaching after the 5-d ANS test is about 1% of the original Cu content of 5300 mg/kg. Upon addition of a stabilizing agent, the Cu leaching quantity is reduced; the extent of reduction depends on the type of chemical used (phosphate, carbonate and sulfide). The 1.6% Na(2)S addition showed negligible Cu leaching, and Na(2)S was, therefore, used in subsequent column tests. The 30-d column test indicates a steady increase of Cu leaching amount with time and reaches about 1.5% of the original Cu content after 30 d. A 180-d column test further increased the Cu leaching to about 5.1% of the original Cu content, whereas no appreciable Cu leaching was found with the addition of 1.6% Na(2)S. A sequential extraction was conducted on the raw ash, ash with the addition of Na(2)S and the residue ash after 30 d of operation to characterize Cu affinity for different solid fractions. The data were used to evaluate the fate of Cu through these interactions.  相似文献   

10.
以废弃的阴极射线管锥玻璃碱性浸出渣及屏玻璃混合粉末为原料烧制泡沫玻璃。考察了发泡温度、屏玻璃加入量、发泡剂种类、发泡剂加入量、稳泡剂添加量对所制备的泡沫玻璃密度及抗压强度的影响。实验结果表明:在发泡温度800 ℃、屏玻璃加入量50%(w)、稳泡剂硼酸加入量5%(以锥玻璃碱性浸出渣及屏玻璃粉末总质量为基准,下同)、发泡剂SiC加入量15%最佳条件下烧制的泡沫玻璃密度达417 kg/m3,抗压强度达1.09 MPa,可满足建筑用泡沫玻璃的Ⅳ型物理性能指标。本实验烧制的泡沫玻璃的Pb浸出量为1.27 mg/L,Ba浸出量为0.06 mg/L,均满足固体废物的浸出毒性标准。  相似文献   

11.
以镍钴合金切削废料为原料,通过酸溶、除铁、除铬、镍钴分离等一系列步骤,回收镍和钴,生产硫酸镍和氯化钴,通过试验确定了最佳工艺条件,并对经济效益进行了分析。  相似文献   

12.
The fates of radioactive cadmium, strontium, cesium, cobalt, arsenic, mercury, zinc, and copper spiked into sewage sludge were determined when the sludge was gasified by a process that maximizes production of char from the sludge (ChemChar process). For the most part the metals were retained in the char product in the gasifier. Small, but measurable quantities of arsenic were mobilized by gasification and slightly more than 1% of the arsenic was detected in the effluent gas. Mercury was largely mobilized from the solids in the gasifier, but most of the mercury was retained in a filter composed of char prepared from the sludge. The small amounts of mercury leaving the gasification system were found to be associated with an aerosol product generated during gasification. The metals retained in the char product of gasification were only partially leachable with 50% concentrated nitric acid.  相似文献   

13.
The aim of this study was to provide a comprehensive risk assessment for medical waste incineration fly ash from another aspect through various leaching methods. The differences and connections between leaching concentrations achieved via the toxicity characteristic leaching procedure (TCLP), the physiologically based extraction test (PBET) and the sequential extraction procedure were also described. Heavy metal contents of the used medical waste incineration fly ash were 1.7–31 times higher than that from Japan, indicating poor medical waste management in China. The fly ash leaching concentration in the TCLP test exceeded the regulation value and can be characterized as hazardous waste under current regulations. However, the PBET concentrations were only 1/10 of the TCLP value or even lower, and the calculated ingested contents of all heavy metals were lower than tolerable daily intake, demonstrating that TCLP might have overestimated the environment risk to some degree. The leaching metal content of TCLP ranged from exchangeable to residual forms, and the leaching percentage varied from 7.75 to 92.55 %, while the content for PBET was equal to or lower than the exchangeable form.  相似文献   

14.
Air-pollution-control (APC) residues from waste incinerators are hazardous waste according to European legislation and must be treated prior to landfilling. Batch and column leaching data determine which type of landfill can receive the treated APC-residues. CEN standards are prescribed for the batch and column leaching test; however, these standards do not specify whether or not the residue samples should be dried prior to the leaching testing. Laboratory tests were performed in parallel (dried/non-dried) on treated APC-residue samples and evaluated with respect to Cr, Cd, Cu, Pb and Zn leaching. The effect of drying of the wet APC-residue samples was particularly dramatic regarding the leaching of Cr. Drying resulted in 10-100 times more Cr leaching in both batch and columns test. Drying also affected the leaching of Cd, Cu and Pb. Initial Cd leaching was up to 100 times higher in column tests with dried APC-residue than in tests with wet residues. The effect of drying appeared to be a combination of decreasing the reduction capacity of the sample (Cr), decreasing pH (Cd, Cu) and in column tests also a wash-out of salts (probably affecting Cd and Pb). If the leaching tests are intended to mimic landfill conditions, the results of this paper suggest that the tests should be done on wet, non-dried residue samples, although this may be less practical than testing dried samples.  相似文献   

15.
Lab synthesized metal-bearing sludge (LSMS) was used in series of designed lab tests to evaluate impacts of ultrasound on selective separation of heavy metals through acid leaching. The tests eliminated the potential of induced bias generated by utilizing field sludge that were produced from different location sources. The results showed that metal pairs of Cu and Fe, Cu and Cr, and Cr and Fe inside LSMS could be practically separated with one metal being contained in a liquid phase and another in a solid phase through acid leaching processes enhanced by ultrasound. With assistance of ultrasound, the acid leaching demonstrated a more efficient segregation between metals within LSMS than a conventional leaching that doesn’t have ultrasonic enhancement, and the tests provided in a generic means that ultrasonically enhanced acid leaching could cost-efficiently recover heavy metals from metal-containing waste sludge.  相似文献   

16.
Waste biodegradation has been largely investigated in the literature by using conventional tests like the BMP test and the respirometric test, whereas only few studies deal with the use of leaching tests in combination with biological activity measurements. Consequently, this study used an improved leaching test to evaluate the biodegradability of two deposits of fresh household waste from the city of Kara in Togo. The first deposit came from households in neighborhoods located in the outskirts of the city and the second consisted of fresh waste, mainly composed of business waste and household waste, collected in the urban center and aimed at being deposited in the landfill. A physicochemical characterization of the two deposits completed the leaching test. The biological activity was monitored by measuring O2 consumption and CO2 production. pH, DOC/OM, VFA/DOC ratios and the SUVA index was measured in the leaching juice to assess both the state of degradation of the waste in the deposits and the ability of the organic matter to be mobilized quickly and to be easily assimilated by microorganisms. The biodegradability of waste from the city of Kara correlated with their origin even though the physical characteristics of the two deposits studied differed greatly.  相似文献   

17.
About 2.5 million tonnes of copper smelter slag are available in Küre, northern part of Turkey. This slag contains large amounts of metallic values such as copper and cobalt. A representative slag sample containing 0.98% Cu, 0.49% Co and 51.47% Fe was used in the experimental studies. Two different methods, direct acid leaching and acid baking followed by hot water leaching were used for recovering Cu and Co from the slag. The effects of leaching time, temperature and acid concentration on Cu- and Co-dissolving efficiencies were investigated in the direct acid leaching tests. The optimum leaching conditions were found to be a leaching time of 2 h, acid concentration of 120 g L(-1), and temperature of 60 degrees C. Under these conditions, 78% Cu and 90% Co were extracted. In the acid baking + hot water leaching tests, 74% Co was dissolved after 1 h of roasting at 200 degrees C using a 3:1 acid:slag ratio, whereas the Cu-dissolving efficiency was 79% and the total slag weight loss was approximately 50%.  相似文献   

18.
Test methods for assessing the biological stability of biodegradable waste   总被引:4,自引:0,他引:4  
This paper presents some results of investigations for the characterization of waste excavated from closed landfills and of waste sampled during mechanical-biological pretreatment before disposal in landfill. The results reported are those obtained with the tests carried out for the assessment of the biological stability of the waste. Some of the considered tests, such as the ones for the determination of the respiration activity and the biogas production, are well known and have been applied for years; other tests, such as the ones for the determination of BOD5 and COD in leaching test eluate and of the black index, are among the tests considered by the international research community for possible utilization for the evaluation of waste biological stability. Good correlations were found for most of the results obtained, proving the reliability of the test methods used. In particular, the effectiveness of biodegradation during waste pretreatment processes can be easily monitored by measuring the respiration index and/or the BOD5 and COD in leaching test eluate; for the characterization of waste from landfills, the use of respiration index can be recommended. In both cases the COD in leaching test eluate may provide additional useful information especially in the case of low values for the respiration index. Moreover, the black index test may be considered with some limits that will be discussed, providing good results in a simple and cost effective way.  相似文献   

19.
Landfills generate emissions over long periods, often longer than a lifetime. The longest lasting emission is leachate. In order to estimate the future requirements for leachate treatment, different kinds of leaching tests may be applied. In this paper, shaking leaching tests (SLT), landfill-simulator leaching tests and a field-cell leaching test performed with ash, municipal solid waste (MSW) and MSW+ash are evaluated. The tests are compared and the factors influencing leaching are identified and discussed. The factors are: liquid to solid (L/S) ratio, water withdrawal, recirculation rate, presence or absence of biological processes, size of particles, duration of experiment, temperature and pre-treatment of the waste. The presence of biological processes has the greatest impact on leaching and is the main reason why SLT is less useful for long-term predictions. The landfill simulator tests were found to be useful for several different kinds of predictions. However, they are not reliable for predicting the L/S required for reaching a certain concentration. The possibilities for reliable long-term predictions would be facilitated by a better knowledge of the influence of various factors on leaching. Such an increased knowledge would make it possible to enhance waste stabilisation in leaching tests as well as in full-scale landfills.  相似文献   

20.
Grout and glass formulations were developed for the stabilization of highly radioactive tank sludges. These formulations were tested in the laboratory with a surrogate and with a sample of an actual mixed waste tank sludge. The grout formulation was tested at wet-sludge loadings of 50–60 wt%, giving a volume increase of about 40–50 vol%. Dried sludge was vitrified into glass at waste oxide loadings of 40–50 wt%, giving a volume decrease of about 50–60 vol%. The Resource Conservation and Recovery Act (RCRA) metals included in surrogate testing were Ag, Ba, Cd, Cr, Ni, Pb, Se, Tl and Hg. Since vitrification would volatilize, not stabilize mercury, it was not included in the surrogates vitrified. The actual sludge sample was only characteristically hazardous for mercury by the toxic characteristic leaching procedure (TCLP) but exceeded the Universal Treatment Standard (UTS) limit for chromium. The grout and glass formulations stabilized these RCRA metals within UTS limits. In addition, a grout leachability index of about 9–10 was measured for both 85Sr and 137Cs, meeting the recommended requirement of >6. The glass leachability index was estimated to be >18 for cold cesium and strontium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号