首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO(2) and CoO directly as CoC(2)O(4)·2H(2)O with 1.0 M oxalate solution at 80°C and solid/liquid ratio of 50 g L(-1) for 120 min. The reaction efficiency of more than 98% of LiCoO(2) can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.  相似文献   

2.

Tannic acid–acetic acid is proposed as novel and green chemicals for cobalt and lithium recycling from spent lithium-ion batteries through a leaching process. The synergism of both acids was documented through batch and continuous studies. Tannic acid promotes cobalt dissolution by reducing insoluble Co3+ into soluble Co2+, while acetic acid is critical to improve the dissolution and stabilize the metals in the pregnant leach solution. Based on batch studies, the optimum conditions for metal recovery at room temperature are acetic acid 1 M, tannic acid 20 g/L, pulp density 20 g/L, and stirring speed 250 rpm (94% cobalt and 99% lithium recovery). The kinetic study shows that increasing temperature to 80 °C improves cobalt and lithium recovery from 65 to 90% (cobalt) and from 80 to 99% (lithium) within 4 h at sub-optimum condition (tannic acid 10 g/L). Kinetic modeling suggests the leaching process was endothermic, and high activation energy indicates a surface chemical process. For other metals, the pattern of manganese and nickel recovery trend follows the cobalt recovery trend. Copper recovery was negatively affected by tannic acid. Iron recovery was limited due to the weak acidic condition of pregnant leach solution, which is beneficial to improve leaching selectivity.

  相似文献   

3.
采用酸浸—萃取—沉淀法回收废锂离子电池中的钴。实验结果表明:废锂离子电池在600℃下煅烧5 h可将正极材料上的有机黏结剂与正极活性物质分离;正极活性物质在Na OH溶液浓度为2.0 mol/L、n(Na OH)∶n(铝)=2.5、碱浸温度为20℃的条件下碱浸反应1 h后,铝浸出率达99.7%;已除铝的正极活性物质在硫酸浓度为2.5 mol/L、H_2O_2质量浓度为7.25 g/L、液固比为10、酸浸温度为85℃的条件下酸浸反应120 min,钴浸出率高达98.0%;酸浸液在p H为3.5、萃取剂P507与Cyanex272体积比为1∶1的条件下,经2级萃取,钴萃取率为95.5%;采用H_2SO_4溶液反萃后在硫化钠质量浓度为8 g/L、反萃液p H为4的条件下沉淀反应10 min,钴沉淀率达99.9%。  相似文献   

4.
陈炎  程洁红 《化工环保》2017,37(6):688-692
废锂电池中含有的Co、Ni和Cu等金属具有回收价值,Fe的存在降低了有价金属的回收效率。为去除废锂电池硫酸浸出液中的Fe,采用黄钠铁矾法分别以氯酸钠和过氧化氢作为氧化剂氧化除Fe,并优化了过氧化氢作为氧化剂的除Fe工艺参数。实验结果表明:过氧化氢作为氧化剂的除Fe效果好于氯酸钠;在n(H2O2)∶n(Fe)=0.5、初始溶液pH为1.8、终点pH为2.5、反应时间为2.0 h、搅拌速率为500 r/min的最佳工艺条件下,初始ρ(Fe)为0.212g/L的硫酸浸出液经除Fe处理后ρ(Fe)小于0.004 g/L,Fe去除率达98.0%,Co、Ni和Cu的损失率分别为1.04%、2.17%和1.41%。  相似文献   

5.
The present work deals with the application of biotechnology for the mobilization of metals from different solid wastes: end of life industrial catalysts, heavy metal contaminated marine sediments and fluorescent powders coming from a cathode ray tube glass recycling process. Performed experiments were aimed at assessing the performance of acidophilic chemoautotrophic Fe/S-oxidizing bacteria for such different solid matrices, also focusing on the effect of solid concentration and of different substrata. The achieved results have evidenced that metal solubilization seems to be strongly influenced by the metal speciation and partitioning in the solid matrix. No biological effect was observed for Ni, Zn, As, Cr mobilization from marine sediments (34%, 44%, 15%, 10% yields, respectively) due to metal partitioning. On the other hand, for spent refinery catalysts (Ni, V, Mo extractions of 83%, 90% and 40%, respectively) and fluorescent powders (Zn and Y extraction of 55% and 70%, respectively), the improvement in metal extraction observed in the presence of a microbial activity confirms the key role of Fe/S oxidizing bacteria and ferrous iron. A negative effect of solid concentration was in general observed on bioleaching performances, due to the toxicity of dissolved metals and/or to the solid organic component.  相似文献   

6.
The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1h at 1273K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to a filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300K taking into account the composition of the batteries. This analysis was done for most of potential reactions between components in the batteries as well as between them and the surrounding atmosphere and it reasonably agrees the experimental results. The results obtained show the role of alkaline batteries at the acid gases cleaning process, through the neutralization reactions of some of their components. Therefore, LCA of spent AA alkaline batteries at the municipal solid waste (MSW) incineration process must consider this contribution.  相似文献   

7.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

8.
程前  廖文超 《化工环保》2018,38(2):236-241
随着锂离子电池的广泛应用,产生了大量废锂离子电池,其负极活性材料中积累了高品位的锂。锂作为一种稀有金属,对其进行回收利用很有意义。选取了无毒、稳定性好的氨基磺酸作为浸出剂,浸取废锂离子电池负极活性材料中的锂,考察了预处理方式对负极活性材料成分和结构的影响以及浸出条件对锂浸出率的影响。结果表明:600℃下煅烧4 h,可完全去除附着在负极活性材料表面的有机物;在氨基磺酸浓度0.75 mol/L、固液比5 g/L、浸出温度40℃、浸出时间45 min的最佳浸出条件下,负极活性材料中锂浸出率达97.2%。  相似文献   

9.
The present work aimed at the chemical and physical characterization of spent sealed MONO-type Ni-Cd batteries, contributing to a better definition of the recycling process of these spent products. The electrode material containing essentially nickel, cadmium and some cobalt corresponds to approximately 49% of the weight of the batteries. The remaining components are the steel parts from the external case and the supporting grids (40%) containing Fe and Ni, the electrolyte (9%) and the plastic components (2%). Elemental quantitative analysis showed that the electrodes are highly concentrated in metals. The phase identification achieved by X-ray powder diffraction combined with chemical analysis and leaching tests allowed the authors to proceed with the composition of the electrode materials as following: cathode: 28.7% metallic Ni, 53.3% Ni(OH)2, 6.8% Cd(OH)2 and 2.8% Co(OH)2; anode: 39.4% metallic Ni and 57.0% Cd(OH)2. The morphology of the electrodes was studied by microscopic techniques and two phases were observed in the electrodes: (1) a bright metallic phase constituted of small nickel grains that acts as conductor, and (2) the main hydroxide phase of the active electrodes into which the nickel grains are dispersed. The disaggregation of the electrode particles from the supporting plates was easily obtained during the dismantling procedures, indicating that a substantial percentage of the electrodes can be efficiently separated by wet sieving after shredding the spent batteries.  相似文献   

10.
Nickel–metal hydride (NiMH) batteries contain high amount of industrial metals, especially iron, nickel, cobalt and rare earth elements. Although the battery waste is a considerable secondary source for metal and chemical industries, a recycling process requires a suitable pretreatment method before proceeding with recovery step to reclaim all valuable elements. In this study, AA- and AAA-type spent NiMH batteries were ground and then sieved for size measurement and classification. Chemical composition of the ground battery black mass and sorted six different size fractions were determined by an analytical technique. Crystal structures of the samples were analyzed by X-ray diffraction. Results show that after mechanical treatment, almost 87 wt% of the spent NiMH batteries are suitable for further recycling steps. Size classification by sieving enriched the iron content of the samples in the coarse fraction which is bigger than 0.25 mm. On the other hand, the amounts of nickel and rare earth elements increased by decreasing sample size, and concentrated in the finer fractions. Anode and cathode active materials that are hydrogen storage alloy and nickel hydroxide were mainly collected in finer size fraction of the battery black mass.  相似文献   

11.
采用离子交换膜电解技术处理铜冶炼过程产生的含氯及重金属的废酸。考察了废酸处理工艺、电解温度、电解时间、电流密度和催化剂的添加等条件对处理效果的影响。实验结果表明:采用先沉淀重金属后脱氯的废酸处理工艺,氯离子和铜离子的去除效果均较好;当以钛盐为催化剂时,在电解温度为40 ℃、电解时间为2.0 h、电流密度为825 A/m2的最佳工艺条件下,处理后废酸中的氯离子质量浓度为0.22 g/L,氯离子去除率为98.59%,铜离子质量浓度为0.45 g/L,铜离子去除率为95.08%,其他重金属大部分也得到有效去除。净化后的废酸可回用至铜冶炼的生产过程中。  相似文献   

12.
This study investigated the effectiveness of a cyclodextrin‐based solid material for the removal of mixed dissolved contaminants. The solid material was prepared by condensation of α‐cyclodextrin. The removal efficiency was found to be 70 percent for total heavy metals (cadmium, lead, chromium, iron, nickel, cobalt, and mercury) to 98 percent for polychlorinated biphenyls (PCBs). The optimum pH for heavy metal removal was approximately 5 and for PCBs it was in the range of 5–7. All of these heavy metals were successfully recovered from the spent cyclodextrin‐based material using nitric acid, allowing the material to be reused for further passes. The results also showed that the presence of alkaline and alkaline earth metals did not have a significant effect on the removal efficiency, indicating that the cyclodextrin‐based material could selectively remove the heavy metals of concern without being consumed by alkaline and alkaline‐earth metals. © 2006 Government of Canada.  相似文献   

13.
In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H2O2 (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H2O2 in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X)1/3 = kct. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X)2/3 + 2(1 ? X) = kct. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.  相似文献   

14.
Four different leaching tests were carried out with spent alkaline batteries as an attempt to quantify the environmental potential burdens associated with landfilling. The tests were performed in columns filled up with batteries either entire or cross-cut, using either deionized water or nitric acid solution as leachant. In a first set of tests, the NEN 7343 standard procedure was followed, with leachant circulating in open circuit from bottom to top through columns. These tests were extended to another leaching step where leachant percolated the columns in a closed loop process.Leachate solutions were periodically sampled and pH, conductivity, density, redox potential, sulphates, chlorides and heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were determined in the samples.The results showed that the total amount of substances leached in tests with cross-cut batteries was higher than with entire ones; zinc and sulphates were the substances found the most in the leachate solutions. In general, the amount of substances dissolved in open circuit is higher than in closed loop due to the effect of solution saturation and the absence of fresh solution addition.Results were compared with metal contents in the batteries and with legal limits for acceptance in landfill (Decision 2003/33/CE and Decree-Law 152/2002). None of the metals were meaningfully dissolved comparatively to its content in the batteries, except Hg. Despite the differences in the experiment procedure used and the one stated in the legislation (mixing, contact time and granulometry), the comparison of results obtained with cross-cut batteries using deionized water with legal limits showed that batteries studied could be considered hazardous waste.  相似文献   

15.
Lab synthesized metal-bearing sludge (LSMS) was used in series of designed lab tests to evaluate impacts of ultrasound on selective separation of heavy metals through acid leaching. The tests eliminated the potential of induced bias generated by utilizing field sludge that were produced from different location sources. The results showed that metal pairs of Cu and Fe, Cu and Cr, and Cr and Fe inside LSMS could be practically separated with one metal being contained in a liquid phase and another in a solid phase through acid leaching processes enhanced by ultrasound. With assistance of ultrasound, the acid leaching demonstrated a more efficient segregation between metals within LSMS than a conventional leaching that doesn’t have ultrasonic enhancement, and the tests provided in a generic means that ultrasonically enhanced acid leaching could cost-efficiently recover heavy metals from metal-containing waste sludge.  相似文献   

16.
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.  相似文献   

17.
The object of this study is to stabilize spent alkaline batteries and to recover useful metals. A blend of dolomite, limestone, and cullet was added to act as a reductant and a glass matrix former in vitrification. Specimens were vitrified using an electrical heating furnace at 1400 °C and the output products included slag, ingot, flue gas, and fly ash. The major constituents of the slag were Ca, Mn, and Si, and the results of the toxicity leaching characteristics met the standards in Taiwan. The ingot was a good material for use in production of stainless steel, due to being mainly composed of Fe and Mn. For the fly ash, the high level of Zn makes it economical to recover. The distribution of metals indicated that most of Co, Cr, Cu, Fe, Mn, and Ni moved to the ingot, while Al, Ca, Mg, and Si stayed in the slag; Hg vaporized as gas phase into the flue gas; and Cd, Pb, and Zn were predominately in the fly ash. Recovery efficiency for Fe and Zn was >90% and the results show that vitrification is a promising technology for reclaiming spent alkaline batteries.  相似文献   

18.
Algae have considerable capability for absorbing heavy metals from wastewaters and are considered an effective treatment technology. Heavy metal absorption from coal mine water from the Bhowra Abandoned mine (open cast mine) and the Sudamdih Shaft mine (underground mine waters), both located in Dhanbad, India, by cells of Spirogyra was studied at different dilutions (100 percent, 80 percent, 60 percent, 40 percent, and 20 percent). In the present study, the following 18 metals were selected for analysis: aluminium (Al), arsenic (As), silver (Ag), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), manganese (Mn), nickel (Ni), and vanadium (V). Accordingly, Al and K were found to be higher in concentration with respect to selected metals for both mine waters. The biosorption study revealed that higher amounts of Al, Bi, Co, Cs, Fe, Ga, Mn, Ni, and V were absorbed by algal biomass at 100 percent concentration from both mine waters. The maximum uptake of Cu, As, and Cd was measured at 60 percent, 40 percent, and 20 percent, respectively, for the Bhowra Abandoned mine water. The biosorption equilibrium study revealed that Ag, Al, Ba, Be, Bi, Co, Cr, Cs, Fe, Ga, In, K, Mn, Ni, and V were maximally absorbed by algal biomass at 100 percent concentration from Bhowra mine water, while the maximum uptake by the algal biomass measured for the Sudamidh coal mine water was for Al, As, Bi, Cu, Fe, and Mn at 100 percent concentration. The different physicochemical characteristics of mine water and drinking water standards was also studied. Accordingly, total dissolved solid and chemical oxygen demand concentrations exceeded the drinking water standards for water samples collected from both mines.  相似文献   

19.
Zinc metal and zinc sulfide were recovered by oxidative dissolution using Thiobacillus ferrooxidans, which is aerobic, autotrophic, and acidophilic bacteria. Thiobacillus ferrooxidans derive energy from oxidation of ferrous iron and elemental sulfur using molecular oxygen as an electron acceptor. From the 10, 000 mg/L of initial zinc concentration, 97% solubilization of zinc metal was obtained from coarse FeS2 due to microbial action. Also, about 70% metal solubilization occurred with fine sized materials in 58 days. The general trend observed for the ZnS systems was a decrease in pH with time. The pH drop is an indication that microorganisms are acclimating and producing acidic by-products. The iron oxidation state changes due to substrate containing coarse particle size FeS2 was shown. The shard drop of ratio of Fe(II)/Fe(Total) and sharp increase of ratio of Fe(III)/Fe(Total) was observed in 20 days after inoculation. Thus, microbial activity began more rapidly for the coarse particle size substrate than for the fine FeS2.  相似文献   

20.
Recovery of nickel, cobalt and some salts from spent Ni-MH batteries   总被引:2,自引:0,他引:2  
This work provides a method to help recover nickel, cobalt metals and some of their salts having market value from spent nickel-metal hydride batteries (SNiB). The methodology used benefits the solubility of the battery electrode materials in sulfuric or hydrochloric acids. The results obtained showed that sulfuric acid was slightly less powerful in leaching SNiB compared to HCl acid. Despite that, sulfuric acid was extremely applied on economic basis. The highest level of solubility attained 93.5% using 3N sulfuric acid at 90 degrees C for 3h. The addition of hydrogen peroxide to the reacting acid solution improved the level of solubility and enhanced the process in a shorter time. The maximum recovery of nickel and cobalt metals was 99.9% and 99.4%, respectively. Results were explained in the light of a model assuming that solubility was a first order reaction. It involved a multi-step sequence, the first step of which was the rate determining step of the overall solubility. Nickel salts such as hydroxide, chloride, hexamminenickel chloride, hexamminenickel nitrate, oxalate and nickel oleate were prepared. With cobalt, basic carbonate, chloride, nitrate, citrate, oleate and acetate salts were prepared from cobalt hydroxide Cost estimates showed that the prices of the end products were nearly 30% lower compared to the prices of the same chemicals prepared from primary resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号