首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京清研利华石油化学技术有限公司作为一家专业从事能源生产、研发的高新技术公司,自成立以来,瞄准科技前沿,致力于在新能源开发利用上寻求突破.针对市场上的原油情况,清研利华推出的复合无铅汽油、生物柴油等系列产品,一投入市场便得到了消费者的热烈欢迎.  相似文献   

2.
砂土中柴油的微生物降解研究   总被引:1,自引:1,他引:0  
从加油站污染土壤中筛选出对柴油具有较强降解能力的菌株,比较研究菌株及菌群降解柴油的差异,探讨植物苜蓿和芥菜对菌株降解柴油污染物的影响.结果表明:①菌株Q18和菌群对砂土中柴油都具有较强的降解能力,菌群对柴油的降解率明显高于菌株Q18.菌株Q18 和菌群在5 d内对柴油的总降解率分别为40.29%和54.15%.与菌株Q18降解柴油相比,菌群主要是强化了中、长链烷烃化合物的降解.②在砂土中,苜蓿和芥菜都能显著地强化菌株Q18对柴油的降解,但苜蓿强化菌株Q18降解柴油的能力强于芥菜. 5 d内菌株Q18-芥菜和菌株Q18-苜蓿复合体系对柴油总降解率分别达到60.05%和56.68%.③菌群和苜蓿及芥菜复合体系降解柴油的能力也有显著提高,但芥菜强化菌群降解柴油的能力强于苜蓿.5 d内菌群-芥菜和菌群-苜蓿复合体系对柴油总降解率分别为75.53%和70.50%.   相似文献   

3.
指出了碱电精制直馏柴油技术存在的问题,对复合溶剂法(SW-1-氨法)精制直馏柴油进行探索试验,介绍了复合溶剂法工艺流程、特点,分析了碱电精制和复合溶剂两种方法的效果和操作成本.对比说明复合溶剂精制直馏柴油并回收环烷酸工艺是极有前景的。  相似文献   

4.
20 0 1年 2月 3日早上 ,英国柴郡温斯福德镇中心的威弗河支流上一群钓鱼者发现在水面上覆盖着一层红色的柴油 ,便向环境局报告。英国环境局应急反应组赶到威弗河支流 ,拦截从下水道进入水中的柴油 ,并召集专家清除河面上的柴油。经调查污染源可能来自使用当地下水道的某工厂。英国柴郡发生柴油泄漏事故  相似文献   

5.
《环境》2018,(3)
正深圳市清研环境科技有限公司是2014年7月从深圳清华大学研究院生态与环境保护实验室独立出来的高端环保装备研发推广平台,公司采用实验室与企业深度融合、同步发展的创新模式,将实验室研发成果进行产品化、商品化,通过市场运作获取价值递增,并将部分收益反哺实验室,实验室对形成的成果不断优化完善,同时开发新的成果,这些成果又支撑企业不断推出新的具有市  相似文献   

6.
《环境》2018,(2)
正深圳市清研环境科技有限公司是2014年7月从深圳清华大学研究院生态与环境保护实验室独立出来的高端环保装备研发推广平台,公司采用实验室与企业深度融合、同步发展的创新模式,将实验室研发成果进行产品化、商品化,通过市场运作获取价值递增,并将部分收益反哺实验室,实验室对形成的成果不断优化完善,同时开发新的成果,这些成果又支撑企业不断推出新的具有市  相似文献   

7.
介绍液态烃碱渣的性质及精制常压汽油、柴油的理论,进行液态烃碱渣用来精制常压汽油、柴油的工业试验,试验结果表明,此法在工艺上是可行的,精制后的常压汽油、柴油的质量均达到了产品标准。  相似文献   

8.
常压汽油碱渣回用洗涤常压柴油   总被引:1,自引:1,他引:1  
介绍了常压汽油碱渣脱油,脱臭,回用精制常压柴油和常压柴油碱渣回收环烷酸的工业试验。试验结果表明,此法在工艺上是可行的,精制后柴油和回收环烷酸的质量均达到了产品标准。  相似文献   

9.
正丁醇/柴油复合燃烧对轻型柴油机排放的影响   总被引:1,自引:0,他引:1  
通过在一台轻型柴油机上加装低压共轨实现在进气歧管上的正丁醇喷射,喷射压力恒定为0.35 MPa;柴油采用缸内直喷,喷射压力恒定为120 MPa;采用自主开发的电控单元(ECU)分别控制柴油与正丁醇的喷射,实现正丁醇/柴油复合燃烧.试验研究了在2800 r·min~(-1)不同负荷下正丁醇喷射量对排放量及颗粒物粒径分布的影响.结果表明:随正丁醇喷射量增加,NO_x和碳烟排放减少,高负荷时降低幅度较大;HC和CO排放增加,低负荷时增加幅度较大;颗粒物生成总量降低且粒径分布重心左移;低负荷时相比于大粒径颗粒物,正丁醇对小粒径颗粒物数浓度的减少更明显;大粒径颗粒物减少比例与小粒径颗粒物减少比例的差距随正丁醇喷射量的增加而减小.  相似文献   

10.
车用柴油机燃用棕榈生物柴油的颗粒物排放特性研究   总被引:1,自引:0,他引:1  
在满足国Ⅳ排放法规的车用柴油机上研究了燃用不同掺混体积比例的棕榈油生物柴油的颗粒物排放特性.试验中棕榈油生物柴油的掺混比例分别为0%、10%、20%、50%和100%,采用DMS500型快速颗粒光谱仪测试分析了发动机在外特性和负荷特性时的颗粒物数量浓度、质量浓度及粒径分布.研究结果表明:随生物柴油掺混比例的增加,颗粒物质量浓度降低.燃用生物柴油后颗粒物的数量浓度在大负荷明显降低,中小负荷呈升高趋势.生物柴油的排气颗粒物呈核态和凝聚态的双峰分布特征,核态数量浓度所占比例高于柴油,凝聚态的质量浓度所占比例略低于柴油.生物柴油颗粒物的几何平均直径小于柴油.  相似文献   

11.
餐饮废弃油脂的生物柴油生命周期能耗与CO_2排放分析   总被引:2,自引:1,他引:1  
对以餐饮废弃油脂为原料,利用化学催化法生产的生物柴油进行了生命周期能耗与CO2排放分析,以具有1 MJ能量的生物柴油产品为功能单位.结果表明:生物柴油生命周期总能耗为1.648 9 MJ,化石能耗为0.616 9 MJ,化石能效比为1.62,生命周期净能量产出为0.383 1 MJ,生命周期CO2净排放量为-10.34 g.与生产和使用1 MJ能量的石化柴油相比,生物柴油生命周期总能耗升高37%,化石能耗降低49%,可减少CO2排放90.99 g.  相似文献   

12.
以膨胀珍珠岩为载体,采用溶胶-凝胶法制备硼、氮共掺杂漂浮型Ti O_2,采用XRD、BET、SEM、UV-vis DRS、XPS等分析手段进行材料表征并考察其对柴油的光降解性能.结果表明,B-N-Ti O_2/EP复合光催化剂表面有明显的Ti O_2覆层,晶型为锐钛矿型Ti O_2,Ti O_2负载有利于比表面积的提升.制得的B-N-Ti O_2/EP的可见光区响应高于N-Ti O_2/EP和Ti O_2/EP,该结果与3种材料的柴油光降解效果相一致.B-N-Ti O_2/EP对柴油的9h降解率将近50%,GC-MS分析表明,光降解过程中柴油各特征组分(C_9~C_(23))均得到不同程度降解,其中C_(11)以下的短链有机分子降解效果明显.  相似文献   

13.
单一及复合表面活性剂对菌株降解柴油的影响   总被引:1,自引:0,他引:1  
研究了单一表面活性剂SDS、TW80和鼠李糖脂对菌株SD10降解柴油的影响,同时探讨了不同比例配制的复合表面活性剂SDS—TW80以及SDS-鼠李糖脂的CMC值变化,及对菌株SD10降解柴油的影响。实验主要结论如下:(1)SDS、TW80和鼠李糖脂,都能提高菌株SD10对柴油的降解率,鼠李糖脂能力最强,其次为TW80,SDS能力最弱。SDS和TW80浓度过高,会抑制菌株生长及活性,导致降解率下降,不过这种抑制或毒害作用可能是短时间的,超过一定时间后,菌株SD10活性又能恢复;(2)TW80或鼠李糖脂,与SDS复配,都能显著降低复合体系的CMC值,且SDS-鼠李糖脂复合体系的CMC值更低;(3)复合表面活性剂SDS—TW80以及SDS-鼠李糖脂比单一表面活性剂性能更强,能有效提高菌株对柴油的降解率,特别是鼠李糖脂和SDS配制复合表面活性剂效果更佳。复合表面活性剂的研究也将为表面活性剂增溶促降解研究和应用提供新的思路和理论基础。  相似文献   

14.
柴油微乳体系对生物油增溶性能研究   总被引:1,自引:0,他引:1  
利用鼠李糖脂(RL)为表面活性剂,不同碳链长度正构醇为助表面活性剂构建柴油逆胶束体系,进而研究了该体系对模拟生物油的增溶性能.以单位柴油逆胶束增溶生物油的量为评价指标,研究了生物油和柴油的体积比B/D、醇的种类、醇与表面活性剂的质量比C/R及表面活性剂的浓度对生物油增溶性能的影响,并对最佳增溶条件下获得的生物油/柴油微乳体系进行了性能分析,包括元素分析、傅里叶红外分析、热稳定性和燃料产品指标分析等.当生物油与柴油的体积比B/D为3:7,RL浓度为15g/L,助表面活性剂选用正庚醇且醇与表面活性剂的质量比C/R为2.0时,柴油微乳体系增溶生物油的量最大,性能较佳.  相似文献   

15.
含氧柴油对柴油机排放及细颗粒物碳质组分的影响   总被引:2,自引:1,他引:1  
乙缩醛(1,1-diethoxyethane)与柴油互溶性好, 可替代乙醇作为生物质来源的柴油含氧添加成分. 生物柴油掺混可以提高乙缩醛和柴油混合燃料的闪点及含氧量. 在柴油发动机台架上, 考察柴油和2种含氧柴油(10%乙缩醛+90%柴油和10%乙缩醛+10%生物柴油+80%柴油)在2个固定转速不同负荷的5个工况点的排放特性, 分析了NOx、HC、CO和PM2.5排放情况, 并用DRI的碳分析仪分析了PM2.5中的碳质组分.结果表明, 与普通柴油排放相比, 含氧柴油对NOx排放速率的影响不大, 在某些工况点HC排放速率有较显著的增加. 含氧柴油降低了柴油机PM2.5排放速率, 最大降低幅度29%. 从碳质组成上看, 含氧燃料降低了PM2.5中总碳 (total carbon,TC) 的排放速率, 最大降低幅度24%. 含氧柴油的元素碳(elemental carbon,EC)排放速率普遍低于普通柴油; 有机碳(organic carbon,OC)的排放速率在发动机高转速工况时明显低于普通柴油; PM2.5的OC/EC值在大多数工况下高于普通柴油. 3种燃料排放PM2.5的碳质组成百分比相似, OC和EC主要为OC1和EC1. 含氧柴油降低了柴油机PM2.5的排放速率, 颗粒物中OC的比例有所增加, 但对颗粒物的碳质组分组成没有明显的影响.  相似文献   

16.
柴油加氢装置分馏塔底精制柴油产品经塔底循环泵增压后,与低分油换热至100℃左右,余热进入新增高压换热器E-3020与柴油原料换热进行余热回收,最后进入柴油空冷器A3002A/B利用百叶窗冷却至50℃送至产品罐区。通过改造后的工艺流程,使空冷器A3002停运,达到节约空冷器电费,提高进料温度节约反应加热炉瓦斯用量的节能降耗目的。  相似文献   

17.
废食用油生物柴油的制备及其掺烧时的动力与排放特性   总被引:21,自引:4,他引:17  
为了查明生物柴油对环境的影响以及废食用油制备的生物柴油对发动机性能和排放特性的影响,研究了生物柴油环境生命周期评价及其对环境的影响以及废食用油生物柴油的生产工艺流程,即甲醇与废食用油在催化剂作用下发生酯交换反应生产出生物柴油.所制备的生物柴油和柴油,按20%和50%掺混后在2台车用增压直喷式柴油机上进行了台架动力和排放特性的测试.试验结果表明,与柴油相比,掺混燃料的动力性和油耗率分别约有3%的下降和8%的上升,烟度、HC、CO和PM排放降低幅度最大分别达65%、11%、33%和13%,而NOx排放有不同程度的上升.本研究表明,发动机燃用低比例的生物柴油掺混燃料,在发动机不作任何改动和调整时,可以在经济性、动力性和排放等方面取得令人满意的综合结果.  相似文献   

18.
为深入研究生物柴油对柴油机颗粒排放的影响,在总结国内外相关研究进展的基础上,通过研究生物柴油的化学组成和物理特性,讨论了生物柴油产生颗粒的特殊性及其对环境的影响.在此基础上,从PAHs(polycyclic aromatic hydrocarbons,多环芳烃)的形成途径角度简要分析了生物柴油颗粒形成的机理,并从生物柴油的3个关键性质入手,分析了其对颗粒排放的规律和影响.最后,以实际柴油机运行时的5项参数为基础,讨论柴油机实际使用生物柴油对颗粒排放的影响.结果表明:①不同材料和产地生物柴油的理化特性和对颗粒排放的影响有很大不同,但总体有利于减少对人体和环境的有害排放.②生物柴油将改变颗粒形成过程中半挥发性物质在微晶核表面的吸附,富氧作用也使燃烧热解后生成的颗粒尺寸更小,减少40%~50%;同时,纳米结构上的变化增加了生物柴油颗粒的反应活性,形成了更多30 nm以内的核态模式颗粒,更容易被人体吸收.③脂肪酸链的长度、不饱和度和含氧量对生物柴油颗粒排放量的减少发挥了重要作用,而柴油机参数的不同也对生物柴油的颗粒排放十分重要.④生物柴油对颗粒生成机理的关键在于复杂的含碳前驱物的生成路径.使用生物柴油总体上可减少前驱物的排放量,其主要成分为四元环和五元环,占总排放量的58.70%以上,但苯并蒽和?分别上升了44%和340%.研究显示,柴油机燃用生物柴油对颗粒排放有积极的一面,但在超细颗粒和某些特定前驱物控制上仍需引起高度重视.   相似文献   

19.
利用改性竹炭作为载体来固定化威尼斯不动杆菌(Acinetobacter venetianus),用于去除柴油.结果显示,培养96 h后,固定化菌对柴油的去除率为86.35%,要高于游离菌(80.50%).为了探究固定化菌去除柴油的机理,采用动力学拟合实验数据,发现固定化菌去除(吸附-降解)柴油中总石油烃(TPHs)的过程符合伪二级动力学,表明TPHs是先吸附在改性竹炭上,然后被目标菌降解.为了进一步证实,利用扫描电镜(SEM)观察到Acinetobacter venetianus很好地固定在载体材料上.傅里叶红外光谱(FTIR)结果表明,经固定化菌处理后,柴油水溶液的谱图在3437.2、2924.4、1407.8 cm-1处出现新的吸收峰,可能为烷烃降解的酯类及羧酸类物质.GC-MS分析表明,相比游离菌,固定化菌对柴油的去除更为彻底.因此,改性竹炭不仅可以作为良好的固定化载体,同时因其对TPHs良好的吸附性能从而提高了去除效率,为油类污染中TPHs的生物材料修复提供了一个新的视角.  相似文献   

20.
在186F柴油机上进行了台架试验,测定了柴油机燃用十六烷值分别为46、50、55的甲醇/生物柴油的排放污染物及燃油消耗.考察了十六烷值对柴油机燃烧甲醇/生物柴油的排放污染物、经济性的影响.结果表明:在标定工况时,当甲醇/生物柴油的十六烷值为46、50、55时,NOx浓度分别为155×10-6、142×10-6、135×10-6;烟度分别为3.4、2.3、3.0;HC浓度分别为89×10-6、193×10-6、284×10-6;CO浓度分别为0.5%、0.8%、1.2%.随着甲醇/生物柴油十六烷值的增加,柴油机排放污染物中的NOx浓度和烟度降低,但HC和CO浓度增加.甲醇/生物柴油的十六烷值不能过高,否则会使柴油机排放污染物急剧增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号