首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lakes play an important role in the cycling of organic matter in the boreal landscape, due to the frequently high extent of bacterial respiration and the efficient burial of organic carbon in sediments. Based on a mass balance approach, we calculated a carbon budget for a small humic Swedish lake in the vicinity of a potential final repository for radioactive waste in Sweden, in order to assess its potential impact on the environmental fate of radionuclides associated with organic matter. We found that the lake is a net heterotrophic ecosystem, subsidized by organic carbon inputs from the catchment and from emergent macrophyte production. The largest sink of organic carbon is respiration by aquatic bacteria and subsequent emission of carbon.dioxide to the atmosphere. Although the annual burial of organic carbon in the sediment is a comparatively small sink, it results in the build-up of the largest carbon pool in the lake. Hence, lakes may simultaneously disperse and accumulate organic-associated radionuclides leaking from a final repository.  相似文献   

2.
Wijnbladh E  Jönsson BF  Kumblad L 《Ambio》2006,35(8):484-495
Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.  相似文献   

3.
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.  相似文献   

4.
Ecosystem budgets of matter contribute to the assessment of transport and accumulation of bioavailable contaminants in a landscape, since flows of matter and energy ultimately determine the rates at which contaminants will be partitioned in the environment. This study compares ecosystem properties, such as net primary production (NPP), sequestration of matter and fluxes to food sources for humans, which are of potential interest to describe fluxes and accumulation of bioavailable radionuclides in 14 catchments within a larger catchment area in southeast Sweden. The carbon budgets, used as a proxy for organic matter, are mainly based on local estimates of pools and fluxes, which have been distributed across a landscape mosaic of different vegetation types and management regimes using a geographical information system (GIS). NPP varied by a factor close to two (432 - 709 g x Cx m(-2)x y(-1)), while net ecosystem production ranged between -124 and 159 gx C x m(-2) x y (-1) for the different catchments. Carbon sequestration mainly occurred in the vegetation while the soil organic carbon pool was mainly a source of carbon. Large herbivores consumed on average 4.5 % of the above-ground green tissue production. When arable land was present in the catchment, the flux of carbon to humans was highest from crops and, in decreasing order, milk and beef, followed by the flux from hunting and berry/fungus picking. The results can be used to estimate the potential assimilation of radionuclides in vegetation and the potential exposure to humans of bioavailable radionuclides.  相似文献   

5.
生态系统健康是新兴的生态系统管理学概念,是环境管理和生态系统管理的目标.在调研文献的基础上阐述了生态系统健康概念的产生、发展及内涵,分析了不同尺度下的评价指标体系,着重回顾和讨论了生态系统健康的评价方法及其存在的问题,以期为生态系统管理提供理论基础.  相似文献   

6.
Nitrogen leaching from boreal and temporal forests, where normally most of the nitrogen is retained, has the potential to increase acidification of soil and water and eutrophication of the Baltic Sea. In parts of Sweden, where the nitrogen deposition has been intermediate to high during recent decades, there are indications that the soils are close to nitrogen saturation. In this study, four different approaches were used to assess the risk of nitrogen leaching from forest soils in different parts of Sweden. Nitrate concentrations in soil water and C:N ratios in the humus layer where interpreted, together with model results from mass balance calculations and detailed dynamic modelling. All four approaches pointed at a risk of nitrogen leaching from forest soils in southern Sweden. However, there was a substantial variation on a local scale. Basing the assessment on four different approaches makes the assessment robust.  相似文献   

7.
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.  相似文献   

8.
As goose populations increase in abundance, their influence on ecological processes is increasing. We review the evidence for key ecological functions of wild goose populations in Eurasia and North America, including aquatic invertebrate and plant propagule transport, nutrient deposition in terrestrial and aquatic ecosystems, the influence of goose populations on vegetation biomass, carbon storage and methane emission, species diversity and disease transmission. To estimate the implications of their growing abundance for humans, we explore how these functions contribute to the provision of ecosystem services and disservices. We assess the weight, extent and trends among such impacts, as well as the balance of their value to society. We examine key unresolved issues to enable a more balanced assessment of the economic costs or benefits of migratory geese along their flyways, including the spatial and temporal variation in services and their contrasting value to different user groups. Many ecological functions of geese are concluded to provide neither services nor disservices and, ecosystem disservices currently appear to outweigh services, although this varies between regions. We consider an improved quantification of ecosystem services and disservices, and how these vary along population flyways with respect to variation in valuing certain cultural services, and under different management scenarios aimed at reducing their disservices, essential for a more balanced management of goose populations.  相似文献   

9.
Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a severe winter inundation and a dramatic water level drop during summer. Temporal changes were interpreted using multivariate analysis and chemical equilibrium calculations. Metal concentrations in sediment increased with depth, indicating a gradual improvement of sediment quality. In contrast, dissolved metal concentrations were highest in top layers due to mobilization from oxyhydroxides and precipitation with sulfides in deeper layers. Inundation had a mobilizing effect as it stimulated resuspension and oxygenation of sediment top layers. Water table lowering combined with organic matter decomposition led to immobilization due to sulfide formation. The chemistry of the sediments was consistent with model calculations, especially for macro-elements. The results illustrate the importance of seasonality for metal risk assessment.  相似文献   

10.
Uncertainties and novel prospects in the study of the soil carbon dynamics   总被引:12,自引:0,他引:12  
Wang Y  Hsieh YP 《Chemosphere》2002,49(8):791-804
Establishment of the Kyoto Protocol has resulted in an effort to look towards living biomass and soils for carbon sequestration. In order for carbon credits to be meaningful, sustained carbon sequestration for decades or longer is required. It has been speculated that improved land management could result in sequestration of a substantial amount of carbon in soils within several decades and therefore can be an important option in reducing atmospheric CO2 concentration. However, evaluation of soil carbon sources and sinks is difficult because the dynamics of soil carbon storage and release is complex and still not well understood. There has been rapid development of quantitative techniques over the past two decades for measuring the component fluxes of the global carbon cycle and for studying the soil carbon cycle. Most significant development in the soil carbon cycle study is the application of accelerator mass spectrometry (AMS) in radiocarbon measurements. This has made it possible to unravel rates of carbon cycling in soils, by studying natural levels of radiocarbon in soil organic matter and soil CO2. Despite the advances in the study of the soil carbon cycle in the recent decades, tremendous uncertainties exist in the sizes and turnover times of soil carbon pools. The uncertainties result from lack of standard methods and incomplete understanding of soil organic carbon dynamics, compounded by natural variability in soil carbon and carbon isotopic content even within the same ecosystem. Many fundamental questions concerning the dynamics of the soil carbon cycle have yet to be answered. This paper reviews and synthesizes the isotopic approaches to the study of the soil carbon cycle. We will focus on uncertainties and limitations associated with these approaches and point out areas where more research is needed to improve our understanding of this important component of the global carbon cycle.  相似文献   

11.
We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton相似文献   

12.
Ecosystem responses to climate changes will affect the exchange of carbon (C) with the atmosphere, thus providing feedback for future climate response. We have developed a C budget model of Canadian forests and forest sector activities and used sensitivity analysis runs with changes in productivity, decomposition, and disturbance regimes to assess the sensitivity of the Canadian forest sector C budget over the next century. The model operates on data derived from Canada's National Forest Biomass Inventory, from the Oak Ridge National Laboratory global soil C data base, and from Canadian data bases that document areas annually disturbed by fire, insects, and harvesting. It simulates the dynamics of biomass and soil C pools (including detritus and coarse woody debris) as they are affected by growth, decomposition, and disturbances. For the reference run of the model, we assumed unchanging climate and disturbance regimes. Under these conditions, total ecosystem C increased by 2 Gt C (2.3%) over the 100-year simulation period. In the sensitivity analysis, we explored the effects of changes in the area annually disturbed by fire and insect-induced stand mortality (-60 to +300%), growth rates (-10 to +20%), decomposition rates (-10 to +25%), and combined changes in growth and decomposition rates. In every model run, the change of total ecosystem C relative to the reference run was less than 10%. Combined changes to growth and decomposition rates yielded very small deviations from the results of the reference run (-0.8 to +1.2%). Because disturbance regime changes affect forest age-class structure as well as forest dynamics, they are expected to affect C budgets strongly. Total ecosystem C, however, is slightly more sensitive to changes in growth and decomposition parameters than to changes in disturbance regimes. Although the sensitivity analysis results suggest that C budgets are little affected by the range of parameter changes implemented here, we must emphasize that our sensitivity analyses do not account for potentially important processes, such as regeneration failure or the shifts in forest distribution.  相似文献   

13.
D.J. Hallett  M.G. Brooksbank 《Chemosphere》1986,15(9-12):1405-1416
The Laurentian Great Lakes represent 20 percent of the surface fresh water of the world. They are unique because of their long flushing times (in excess of 175 years for Lake Superior), their relatively short mixing times and their consequent propensity to accumulate persistent chemicals and respond very slowly to decreased chemical loadings. Lake Ontario, as the last lake in the system, receives the drainage from the other four Great Lakes in addition to significant chemical contributions from within its drainage basin particularly from its main tributary, the Niagara River.

This paper evaluates environmental levels of TCOD and related compounds within the Lake Ontario ecosystem by considering temporal trends, the application of mass loading principles for large lake ecosystems and the examination of a holistic ecosystem perspective on exposure routes.  相似文献   


14.
An extensive data set describing effects of the herbicide linuron on macrophyte-dominated microcosms was analysed with a food web model to assess effects on ecosystem functioning. We showed that sensitive phytoplankton and periphyton groups in the diets of heterotrophs were gradually replaced by more tolerant phytoplankton species as linuron concentrations increased. This diet shift--showing redundancy among phytoplankton species--allowed heterotrophs to maintain their functions in the contaminated microcosms. On an ecosystem level, total gross primary production was up to hundred times lower in the treated microcosms but the uptake of dissolved organic carbon by bacteria and mixotrophs was less sensitive. Food web efficiency was not consistently lower in the treated microcosms. We conclude that linuron predominantly affected the macrophytes but did not alter the overall functioning of the surrounding planktonic food web. Therefore, a risk assessment that protects macrophyte growth also protects the functioning of macrophyte-dominated microcosms.  相似文献   

15.
Decomposer animals and bioremediation of soils   总被引:17,自引:0,他引:17  
Although microorganisms are degrading the contaminants in bioremediation processes, soil animals can also have important--while usually an indirect--role in these processes. Soil animals are useful indicators of soil contamination, both before and after the bioremediation. Many toxicity and bioavailability assessment methods utilizing soil animals have been developed for hazard and risk-assessment procedures. Not only the survival of the animals, but also more sensitive parameters like growth, reproduction and community structure have often been taken into account in the assessment. The use of bioassays together with chemical analyses gives the most reliable results for risk analyses. This is because physical, chemical and biological properties of the remediated soil may be changed during the process, and it is possible that transformation rather than mineralization of the contaminants has taken place. In addition, the soil may contain other harmful substances than those searched in chemical analyses. Finally, because the ultimate goal of the bioremediation should be--together with mineralization of the harmful substances--the ecological recovery of the soil, development of diverse decomposer community as a basis of the functioning ecosystem should be ensured. Soil animals, especially the large ones, can also actively take part in the ecological recovery processes through their own activity. The potential risk of transfer of contaminants accumulated in soil animals to the above-ground food webs should be borne in mind.  相似文献   

16.
Ellis JB 《Chemosphere》2000,41(1-2):85-91
Alternative risk assessment approaches are reviewed for the evaluation of the ecological status and health of urban receiving waters subject to intermittent pollution events. Performance-based criteria founded on exceedance probabilities and related to the end-of-pipe discharge of chemical-specific substances comprise the conventional basis for setting regulatory standards in both North America and Europe. The difficulties and limitations of this approach, particularly in identifying realistic chronic, sub-lethal toxic risks arising from complex effluents are discussed. The potential role of Toxicity Based Criteria (TBC) for setting ecological consent limits for stormwater effluents is considered and the capabilities and limitations of Direct Toxicity Assessment (DTA) are identified. The inability of DTA procedures to satisfactorily evaluate chronic, sub-lethal risks has led to increasing interest in the potential use of in-situ biomarker techniques for the fingerprinting of stress-response properties as a means of diagnosing risk assessment for integrated urban runoff management.  相似文献   

17.
Exchanges between the soils and the atmosphere may control or significantly affect the global budgets of many environmentally important trace gases, both natural and man-made. Flux measurements, taken in several ecosystems, show that soils are a substantial source of chloroform (8 ± 4 μg/m2/d) and a sink for methyl chloride (-10 -3 +6 μg/m2/d). The known sources and sinks of these gases are insufficient to explain the observed concentrations. Our findings will help to balance the global budget of chloroform but may put the budget of methyl chloride further out of balance. We also found, consistent with previous research, that soils are a substantial source of nitrous oxide and carbon monoxide and take up hydrogen and methane. The uptake of man-made chlorocarbons was observed, but the rates are small. Observed fluxes of non-methane hydrocarbons showed few patterns except that soils may be a source of ethane and butane.  相似文献   

18.
Wet and dry atmospheric depositions and soil chemical and microbiological properties were determined in a Mediterranean natural ecosystem of Central Italy near Rome (Castelporziano Estate). The monitoring of depositions permitted us to quantify the exceedances of S and N compounds (expressed as eqH(+)ha(-1)year(-1)) over the critical loads of acidity. Critical loads, i.e. the quantity of a substance which a part of the environment can tolerate without adverse effects occurring, were determined adopting the level 0 methodology following the UN/ECE Convention on Long-range Transboundary Air Pollution. Deposition data were available for the period 1992-1997, and acidity exceedances were referred to the main vegetation types present in the area. Results showed that most part of the Estate has a medium degree of vulnerability to acidification, and the corresponding risk of acidification deriving from the exceedances of atmospheric deposition was rather low. The study of soil chemical and microbiological properties included mainly total soil organic carbon (SOC), microbial biomass-C, biomass-C/SOC, soil respiration, and metabolic quotient (qCO2). Soil organic C metabolism has been discussed on the basis of the results from eight sampling sites.  相似文献   

19.
Sin SN  Chua H 《Chemosphere》2000,41(1-2):149-153
Branched fatty acids (BAFs) in industrial effluents are often persistent in biological wastewater treatment systems and end up as organic contaminants in the water environment. In this study, degradation of eight characteristic BAFs in a natural anaerobic ecosystem of an eutrophic river sediment was studied in vitro by enrichment culture techniques. The anaerobic consortium, comprising of BFA-degrading and methane-producing genera, degraded BFAs with a tertiary carbon through beta-oxidation followed by methanogenesis mechanisms. The consortium could not degrade BFAs with a quaternary carbon. The degree of branching at the alpha or beta position along the carbon chain interfered with the beta-oxidation mechanisms, and hence affected the degradability of the compound.  相似文献   

20.
This paper presents chemical mass balance (CMB) analysis of organic molecular marker data to investigate the sources of organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. The model accounts for emissions from eight primary source classes, including major anthropogenic sources such as motor vehicles, cooking, and biomass combustion as well as some primary biogenic emissions (leaf abrasion products). We consider uncertainty associated with selection of source profiles, selection of fitting species, sampling artifacts, photochemical aging, and unknown sources. In the context of the overall organic carbon (OC) mass balance, the contributions of diesel, wood-smoke, vegetative detritus, road dust, and coke-oven emissions are all small and well constrained; however, estimates for the contributions of gasoline-vehicle and cooking emissions can vary by an order of magnitude. A best-estimate solution is presented that represents the vast majority of our CMB results; it indicates that primary OC only contributes 27±8% and 50±14% (average±standard deviation of daily estimates) of the ambient OC in the summer and winter, respectively. Approximately two-thirds of the primary OC is transported into Pittsburgh as part of the regional air mass. The ambient OC that is not apportioned by the CMB model is well correlated with secondary organic aerosol (SOA) estimates based on the EC-tracer method and ambient concentrations of organic species associated with SOA. Therefore, SOA appears to be the major component of OC, not only in summer, but potentially in all seasons. Primary OC dominates the OC mass balance on a small number of nonsummer days with high OC concentrations; these events are associated with specific meteorological conditions such as local inversions. Primary particulate emissions only contribute a small fraction of the ambient fine-particle mass, especially in the summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号