首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Applying Ecological Risk Principles to Watershed Assessment and Management   总被引:6,自引:0,他引:6  
Considerable progress in addressing point source (end of pipe) pollution problems has been made, but it is now recognized that further substantial environmental improvements depend on controlling nonpoint source pollution. A watershed approach is being used more frequently to address these problems because traditional regulatory approaches do not focus on nonpoint sources. The watershed approach is organized around the guiding principles of partnerships, geographic focus, and management based on sound science and data. This helps to focus efforts on the highest priority problems within hydrologically-defined geographic areas. Ecological risk assessment is a process to collect, organize, analyze, and present scientific information to improve decision making. The U.S. Environmental Protection Agency (EPA) sponsored three watershed assessments and found that integrating the watershed approach with ecological risk assessment increases the use of environmental monitoring and assessment data in decision making. This paper describes the basics of the watershed approach, the ecological risk assessment process, and how these two frameworks can be integrated. The three major principles of watershed ecological risk assessment found to be most useful for increasing the use of science in decision making are (1) using assessment endpoints and conceptual models, (2) holding regular interactions between scientists and managers, and (3) developing a focus for multiple stressor analysis. Examples are provided illustrating how these principles were implemented in these assessments.  相似文献   

2.
In watershed management the effects of plants on water cannot be considered a constant and forgotten because: plants of different sizes and forms use water at different rates and plants of the same size differ in their needs for water because of anatomical differences. Many common denominators are present in all watersheds covered by vegetation. Forces exerted on the soil water by vegetation, climate and soil are the same kinds of forces. The differences between watersheds in water yield potential appear to be due to differences in the degree in which these forces are exerted. However, the influence of biotic factors are more individual. The similarities and differences existing between watersheds suggest some principles that can be used as guides to understanding individual watershed problems and as possible guides to determining when, how, and where to treat a given watershed. Eleven principles are given and their application to the definition and solution of biological or vegetational problems of watershed management are discussed.  相似文献   

3.
Watershed analysis and watershed management are developing as tools of integrated ecological and economic study. They also assist decision-making at the regional scale. The new technology and thinking offered by the advent of the Internet and the World Wide Web is highly complementary to some of the goals of watershed analysis. Services delivered by the Web are open, interactive, fast, spatially distributed, hierarchical and flexible. The Web offers the ability to display information creatively, to interact with that information and to change and modify it remotely. In this way the Internet provides a much-needed opportunity to deliver scientific findings and information to stakeholders and to link stakeholders together providing for collective decision-making. The benefits fall into two major categories: methodological and educational. Methodologically the approach furthers the watershed management concept, offering an avenue for practical implementation of watershed management principles. For educational purposes the Web is a source of data and insight serving a variety of needs at all levels. We use the Patuxent River case study to illustrate the web-based approach to watershed management. A watershed scale simulation model is built for the Patuxent area and it serves as a core for watershed management design based on web applications. It integrates the knowledge available for the Patuxent area in a comprehensive and systematic format, and provides a conceptual basis for understanding the performance of the watershed as a system. Moreover, the extensive data collection and conceptualisation required within the framework of the modeling effort stimulates close contact with the environmental management community. This is further enhanced by offering access to the modeling results and the data sets over the Web. Additional web applications and links are provided to increase awareness and involvement of stakeholders in the watershed management process. We argue that it is not the amount and quality of information that is crucial for the success of watershed management, but how well the information is disseminated, shared and used by the stakeholders. In this respect the Web offers a wealth of opportunities for the decision-making process, but still to be answered are the questions at what scale and how widely will the Web be accepted as a management tool, and how can watershed management benefit from web applications.  相似文献   

4.
5.
不规范的流域水环境模型应用增加了决策风险。从过程管理的角度来看,我国尚未针对流域水环境模型的评估与验证建立标准化的技术流程,模型标准化应用水平较低。在总结已有研究成果以及先进管理经验的基础上,本文构建了标准化的流域水环境模型评估验证技术框架,提出了对应用于流域水环境管理决策的模型开展评估验证的基本原则、工作流程和技术要求,并通过案例研究验证了技术框架的可行性。技术框架引入了结构合理性评估、参数识别与灵敏度分析、模拟效果评估、不确定性分析等模型评估验证的关键技术,结合不同的模型类型、决策功能等特征给出了原则性的技术要求和应用建议。研究成果充分考虑了我国的环境管理需求,与现阶段环境模拟技术要求、环境监测能力和数据条件相适应,在理论探讨和技术实现层面具备明确的可行性,将促进我国流域水环境模型的规范化、标准化和本地化应用。  相似文献   

6.
This study uses a developed plan coding protocol in evaluating the quality of 76 comprehensive plans to examine whether local comprehensive plans have adequately integrated the concepts of sustainable stormwater management. The Chesapeake Bay watershed was chosen for the investigation because degraded stormwater runoff from nearby urban and suburban jurisdictions have critically polluted the watershed. The findings indicate that the majority of local governments have not sufficiently incorporated the sustainable stormwater management principles into their comprehensive plans. Five plan components (factual basis, goals and objectives, inter-organizational cooperation, policies, tools and strategies, and implementation) appear weak in realizing the concepts. The current study concludes by providing policy implications and recommendations to increase awareness and understanding of sustainable stormwater management concepts and to produce better implementation plans that integrate stormwater, ecosystem, and environmental planning comprehensively.  相似文献   

7.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   

8.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   

9.
Continued improvements in spatial datasets and hydrological modeling algorithms within Geographic Information Systems (GISs) have enhanced opportunities for watershed analysis. With more detailed hydrology layers and watershed delineation techniques, we can now better represent and model landscape to water quality relationships. Two challenges in modeling these relationships are selecting the appropriate spatial scale of watersheds for the receiving stream segment, and handling the network or pass-through issues of connected watersheds. This paper addresses these two important issues for enhancing cumulative watershed capabilities in GIS. Our modeling framework focuses on the delineation of stream-segment-level watershed boundaries for 1:24 000 scale hydrology, in combination with a topological network model. The result is a spatially explicit, vector-based, spatially cumulative watershed modeling framework for quantifying watershed conditions to aid in restoration. We demonstrate the new insights available from this modeling framework in a cumulative mining index for the management of aquatic resources in a West Virginia watershed.  相似文献   

10.
ABSTRACT: Forces driving the initiation of watershed management activities in Alabama have ranged from top-down, agency-led initiatives to bottom-up, citizen-led initiatives. A number of watershed projects in Alabama were examined including three NPS projects funded by U.S. EPA grants and a more comprehensive locally-initiated watershed management authority. Watershed projects were categorized into four different models. Factors which produced significant differences in the development and utilization of social capital and local capacities for watershed management were investigated. The success of watershed management initiatives was examined qualitatively and appears to correlate with a number of social factors. These factors include the extent of stakeholder involvement, the availability of social capital in the watershed, and the presence of a real or perceived water resource concern or problem. Both short term project success and the longer term prognosis for continued watershed management activities seems to depend most upon the amount of social capital in the watershed. Two major changes in resource management programs and organizations could lead to increased focus on and support for local watershed management initiatives. These are reorganization of resource management agencies around watershed units, and assignment of at least one staff person in each watershed unit to watershed management.  相似文献   

11.
ABSTRACT: Brazil is currently facing the challenge of implementing a new water resources management system to promote the rational and sustainable use of the country's waters. This system is based on the following principles of water management: (2) stakeholders' participation; (2) the watershed as the planning and management unit; and (3) the economic value of water. Stakeholders' participation and the involvement of civil society in the decision making process is guaranteed by permanent seats in the watersheds' management committees. These committees are the highest decision level for the establishment of water policy and for planning its use. The executive branch of the committees is the watershed agency or the water agency. This paper presents the recently approved Brazilian water resources management system and discusses the participatory approach followed to validate and to ensure prompt response to decisions regarding water use by all stakeholders. The formulation of the National Water Law (January/1998) was also supported by extensive consultation with civil society, professional associations, state and municipal governments as well as with federal governmental agencies and private sector organizations. It also presents an overview of the formulation of the National Water Law. Finally, as watershed committees have been created and are already operating in a limited number of watersheds, some of the major obstacles to the success of the new system are discussed along with alternatives for overcoming such obstacles.  相似文献   

12.
Most states in the USA have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles that frequently occurring storms can initiate surface runoff from fields. Once initiated, this hydrological pathway has a high potential to transport P to the stream. In regions where hydrologically active areas of watersheds vary in time and space, surface runoff generation by "saturation excess" has been linked to distance from stream, with larger events resulting in larger contributing distances. Thus, storm-return period and P loss from a 39.5-ha mixed-land-use watershed in Pennsylvania was evaluated to relate return-period thresholds and distances contributing P to streams. Of 248 storm flows between 1997 and 2006, 93% had a return period of 1 yr, contributing 47% of total P (TP) export, while the largest two storms (10-yr return period) accounted for 23% of TP export. Contributing distance thresholds for the watershed were determined (50-150 m) for a range of storm-return periods (1-10 yr) from hydrograph analysis. By modifying storm-return period thresholds in the P Index and thereby contributing distance, it is possible to account for greater risk of P loss during large storms. For instance, increasing return period threshold from 1 (current P indices) to 5 yr, which accounted for 67% of TP export, increased the P-management restricted area from 20 to 58% of the watershed. An increase in impacted area relative to a decreased risk of P loss creates a management-policy dilemma that cannot be ignored.  相似文献   

13.
Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.  相似文献   

14.
Place-based resource management, such as watershed or ecosystem management, is being promoted to replace the media-focused approach for achieving water quality protection. We monitored the agricultural area of a 740-ha watershed to determine the nature and scale of farm material transfers, N and P balances, and farmer decisions that influenced them. Using field data and farmer interviews we found that 3 of 15 farms, emphasizing hog, dairy, or cash crops with poultry production, accounted for more than 80% of the inputs and outputs of N and P for the 362-ha agricultural area (332 ha of managed cropland and animal facilities). Feed for hogs (38% each of total N and P) and manure applied to fields as part of the cash crop and poultry operation (28 and 38% of total N and P, respectively) were the dominant inputs. No crops grown in the watershed were fed to animals in the watershed and more manure nutrients were applied from animals outside than from those in the watershed. A strategic decision by the hog farmer to begin marketing finished hogs changed the material transfers and nutrient balances more than tactical decisions by other farmers in allocating manure to cropland. Since the components of agricultural production were not all interconnected, the fundamental assumption of place-based management programs is not well-suited to this situation. Alternative approaches to managing the effect of agriculture on water quality should consider the organization of agricultural production and the role of strategic decisions in controlling farm nutrient balances.  相似文献   

15.
Abstract: Quantifying the hydrologic responses to land use/land cover change and climate variability is essential for integrated sustainable watershed management in water limited regions such as the Loess Plateau in Northwestern China where an adaptive watershed management approach is being implemented. Traditional empirical modeling approach to quantifying the accumulated hydrologic effects of watershed management is limited due to its complex nature of soil and water conservation practices (e.g., biological, structural, and agricultural measures) in the region. Therefore, the objective of this study was to evaluate the ability of the distributed hydrologic model, MIKE SHE to simulate basin runoff. Streamflow data measured from an overland flow‐dominant watershed (12 km2) in northwestern China were used for model evaluation. Model calibration and validation suggested that the model could capture the dominant runoff process of the small watershed. We found that the physically based model required calibration at appropriate scales and estimated model parameters were influenced by both temporal and spatial scales of input data. We concluded that the model was useful for understanding the rainfall‐runoff mechanisms. However, more measured data with higher temporal resolution are needed to further test the model for regional applications.  相似文献   

16.
ABSTRACT: Successful watershed management requires consideration of multiple objectives and the efficient use of scarce public and private resources. One way to address these multi-faceted issues is through Social Benefit-Cost Accounting (SBCA). SBCA is a systematic method of addressing complex social and economic issues relevant to proposed watershed management projects. Benefits of using this technique include: benefits and costs of watershed projects are better understood; politically sensitive issues tend to be put into perspective; and stakeholders' interests are placed on a level playing field. An example from Bogota, Colombia demonstrates how SBCA can be used to value the benefits and costs of a proposed project. By addressing the benefits and costs to all stakeholders, the design of watershed management programs can be improved to achieve goals in a cost-effective manner.  相似文献   

17.
ABSTRACT: Watershed management decision making is a complex process. Cooperation and communication among federal, state, and local stakeholders is required while balancing biophysical and socioeconomic concerns. The public is taking part in environmental decisions, and the need for technology transfer from public agencies to stakeholders is increasing. Information technology has had a profound influence on watershed management over the past decade. Advances in data acquisition through remote sensing, data utilization through geographic information systems (GIS), and data sharing through the Internet have provided watershed managers access to more information for management decisions. In the future, applications incorporating hydrologic simulation models, GIS, and decision support systems will be deployed through the Internet. In addition to challenges in making complex modeling technology available to diverse audiences, new information technology issues, such as interoperability, Internet access, and security, are introduced when GIS, simulation models, and decision support systems are integrated in an Internet environment. This paper presents a review of current use of information technology in watershed management decision making and a discussion of issues created when developing Internet based, integrated watershed management decision support systems. A prototype spatial decision support system (SDSS) for rangeland watershed management was developed using web services, which are components that communicate using text based messages, thus eliminating proprietary protocols. This new framework provides an extensible, accessible, and interoperable approach for SDSS.  相似文献   

18.
南四湖流域水环境承载力评价指标体系构建   总被引:2,自引:0,他引:2  
针对目前水环境承载力概念及评价指标体系研究中存在的问题,构建了流域水环境承载力概念模型,根据评价指标筛选原则,建立了南四湖流域水环境承载力评价指标体系,包括水环境承载能力、水环境压力、水环境承载状态和社会经济调控能力4部分,共有57个具体指标,从而为制定流域保护规划和管理政策提供技术支持,为寻求流域水环境承载力的提高途径和措施提供科学依据。  相似文献   

19.
ABSTRACT: Alternate solutions to a contemporary water resource management problem are developed: 53 municipalities in Wisconsin's Lake Michigan watershed must reduce their phosphorus input to the lake by 85 percent of their influent load. Different definitions of fairness, based on legal and philosophical principles, form the foundation for 18 distinct policy options. The definitions of fairness include: (1) contractual agreement; (2) precedent; (3) the market system; (4) egalitarianism; and (5) equal treatment of equals and differential treatment of unequals, with equals defined in terms of need, worth, ability to pay, who receives the benefits, and the dictates of existing technology. Two alternatives are seen to dominate: (A) municipalities could form contractual relationships to meet the removal requirement as groups, and enjoy least cost operating schedules that save money for members of each group; and (B) whereas 20 of the municipalities collect 91 percent of all phosphorus collected in the watershed, a removal of 90 percent of their influent phosphorus alone ensures that the watershed meets the standard. Under this option, the other 33 municipalities are not required to remove phosphorus. Reasons for the dominance of the two policies are discussed in detail.  相似文献   

20.
ABSTRACT: Integrated watershed management in the Lower Mississippi Alluvial Plain (Delta) requires blending federal, state, and local authority. The federal government has preeminent authority over interstate navigable waters. Conversely, state and local governments have authority vital for comprehensive watershed management. In the Delta, integrating three broad legal and administrative regimes: (1) flood control, (2) agricultural watershed management, and (3) natural resources and environmental management, is vital for comprehensive intrastate watershed, and interstate river basin management. Federal Mississippi River flood control projects incorporated previous state and local efforts. Similarly, federal agricultural programs in the River's tributary headwaters adopted watershed management and were integrated into flood control efforts. These legal and administrative regimes implement national policy largely in cooperation with and through technical and financial assistance to local agencies such as levee commissions and soil and water conservation districts. This administrative infrastructure could address new national concerns such as nonpoint source pollution which require a watershed scale management approach. However, the natural resources and environmental management regime lacks a local administrative infrastructure. Many governmental and non governmental coordinating organizations have recently formed to address this shortcoming in the Delta. With federal and state leadership and support, these organizations could provide mechanisms to better integrate natural resources and environmental issues into the Delta's existing local administrative infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号