首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter < 10 microm (PM10) and < 2.5 microm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 microg/m(3). The median particle size downwind of a demolition site (17.3 microm) was significantly larger than background (3 microm). Specific activities are associated with realtime particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

2.
Worshippers in temples may be exposed to high concentrations of pollutants emitted from incense burning. This work assessed the PM2.5 and PM10 exposures of temple worshippers in Taiwan and explored the important exposure determinants such as numbers of passing visitors and joss sticks in censers, worshipping dates, and temple characteristics. Sampling was conducted on the 1st, 2nd, 15th, and 16th of the lunar month in two temples in Taichung, Taiwan. Research staff took samples by wearing one PM2.5 and one PM10 sampler and imitating worshipping activity. Personal environmental monitors connected to personal pumps with 2-L/min flow rates were used for sampling. PM10 samples were also simultaneously taken outside the temples. The results suggested that burning joss sticks in temples is a significant PM exposure source. The geometric mean of personal exposure was 444 microg/m3 PM2.5 [geometric standard deviation (GSD) = 1.8] and 583 microg/m3 PM10 (GSD = 1.4). The latter was approximately 4-6 times that of roadside concentrations. Exposures on the 1st and 15th (with more visitors and more joss sticks) were about 130 microg/m3 PM2.5 and 249 microg/m3 PM10 higher than those on the 2nd and the 16th. Furthermore, each joss stick in the censer contributed about 0.40 microg/m3 of particles to the worshippers' exposure. In the worst case, PM exposure during one temple visit would account for 11% of the personal exposure in one day.  相似文献   

3.
In response to community concerns, the air quality impact of imploding a 22-story building in east Baltimore, MD, was studied. Time- and space-resolved concentrations of indoor and outdoor particulate matter (PM) (nominally 0.5-10 microm) were measured using a portable nephelometer at seven and four locations, respectively. PM10 levels varied in time and space; there was no measurable effect observed upwind of the implosion. The downwind peak PM10 levels varied with distance (54,000-589 microg/m3) exceeding pre-implosion levels for sites 100 and 1130 m 3000- and 20-fold, respectively. Estimated outdoor 24-hr integrated mass concentrations varied from 15 to 72 microg/m3. The implosion did not result in the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standard (NAAQS) for PM10 being exceeded. X-ray fluorescence analysis indicated that the elemental composition was dominated by crustal elements: calcium (57%), silicon (23%), aluminum (7.6%), and iron (6.1%). Lead was above background but at a low level (0.17 microg/m3). Peak PM10 concentrations were short-lived; most sites returned to background within 15 min. No increase in indoor PM10 was observed even at the most proximate 250 m location. These results demonstrate that a building implosion can have a severe but short-lived impact on community air quality. Effective protection is offered by being indoors or upwind.  相似文献   

4.
A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.  相似文献   

5.
Particulate matter (PM) emitted from cattle feedlots are thought to affect air quality in rural communities, yet little is known about factors controlling their emissions. The concentrations of PM (i.e., PM2.5, PM10, and total suspended particulates or TSP) upwind and downwind at two large cattle feedlots (KS1, KS2) in Kansas were measured with gravimetric samplers from May 2006 to October 2009 (at KS1) and from September 2007 to April 2008 (at KS2). The mean downwind and net (i.e., downwind - upwind) mass concentrations of PM2.5, PM10, and TSP varied seasonally, indicating the need for multiple-day, seasonal sampling. The downwind and net concentrations were closely related to the moisture content of the pen surface. The PM2.5/PM10 and PM2.5/TSP ratios at the downwind sampling location were also related to the moisture content of the pen surface, humidity, and temperature. Measurement of the particle size distribution downwind of the feedlot with a cascade impactor showed geometric mean diameter ranging from 7 to 18 microm, indicating that particles that were emitted from the feedlots were generally large in size.  相似文献   

6.
Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.  相似文献   

7.
In-stack condensible particulate matter measurements and issues   总被引:5,自引:0,他引:5  
Particulate matter (PM) emitted from fossil fuel-fired units can be classified as either filterable or condensible PM. Condensible PM typically is not measured because federal and most state regulations do not require sources to do so. To determine the magnitude of condensible PM emissions relative to filterable PM emissions and to better understand condensible PM measurement issues, a review and analysis of actual U.S. Environmental Protection Agency (EPA) Method 202 (for in-stack condensible PM10) and EPA Method 201/201A (for in-stack filterable PM10) results were conducted. Methods 202 and 201/201A results for several coal-burning boilers showed that the condensible PM, on average, comprises approximately three-fourths (76%) of the total PM10 stack emissions. Methods 202 and 201/201A results for oil- and natural gas-fired boilers showed that the condensible PM, on average, comprises 50% of the total PM10 stack emissions. Methods 202 and 201/201A results for oil-, natural gas-, and kerosene-fired combustion turbines showed that the condensible PM, on average, comprises 69% of the total PM10 stack emissions. Based on these limited measurements, condensible PM can make a significant contribution to total PM10 emissions for fossil fuel-fired units. A positive bias (indicating more condensible PM than is actually emitted) may exist in the measured data due to the conversion of dissolved sulfur dioxide to sulfate compounds in the sampling procedure. In addition, these Method 202 results confirm that condensible PM, on average, is composed mostly of inorganic matter, regardless of the type of fuel burned.  相似文献   

8.
The U.S. Environmental Protection Agency (EPA) currently classifies Imperial County, CA, as a nonattainment area for PM10 (particulate matter [PM] < or = 10 microm in diameter), and this region suffers from high rates of chronic bronchitis and childhood asthma. Although high annual and daily average PM levels can have negative health and economic effects, recent studies have identified an association between adverse health effects and short-term PM spikes of tens of micrograms per cubic meter. This study identified PM episodes in Calexico/Mexicali that involve PM concentration spikes with concentrations up to 10 times greater than those reported to cause adverse health effects. These episodes appear to be relatively common during the winter months, are associated with wind speeds below 2 m/sec and stable boundary level heights below 500 m, and can comprise a large portion of the 24-hr PM levels. The organic composition of the PM10 samples collected during the low-wind/ high-PM episodes differed from that collected at other times. However, a preliminary source attribution identified only one significant difference between the source classes: agricultural burning accounted for 6.7% of organic-fraction PM10 for low-wind/high-PM episodes versus 0.25% at other times. This preliminary source attribution also revealed that motor vehicles were the most important relative contributor to organic PM10.  相似文献   

9.
This work was motivated by the need to better reconcile emission factors for fugitive dust with the amount of geologic material found on ambient filter samples. The deposition of particulate matter with aerodynamic diameter less than or equal to 10 microm (PM10), generated by travel over an unpaved road, over the first 100 m of transport downwind of the road was examined at Ft. Bliss, near El Paso, TX. The field conditions, typical for warm days in the arid southwestern United States, represented sparsely vegetated terrain under neutral to unstable atmospheric conditions. Emission fluxes of PM10 dust were obtained from towers downwind of the unpaved road at 7, 50, and 100 m. The horizontal flux measurements at the 7 m and 100 m towers indicated that PM10 deposition to the vegetation and ground was too small to measure. The data indicated, with 95% confidence, that the loss of PM10 between the source of emission at the unpaved road, represented by the 7 m tower, and a point 100 m downwind was less than 9.5%. A Gaussian model was used to simulate the plume. Values of the vertical standard deviation sigma(z) and the deposition velocity Vd were similar to the U.S. Environmental Protection Agency (EPA) ISC3 model. For the field conditions, the model predicted that removal of PM10 unpaved road dust by deposition over the distance between the point of emission and 100 m downwind would be less than 5%. However, the model results also indicated that particles larger than 10 microm (aerodynamic diameter) would deposit more appreciably. The model was consistent with changes observed in size distributions between 7 m and 100 m downwind, which were measured with optical particle counters. The Gaussian model predictions were also compared with another study conducted over rough terrain and stable atmospheric conditions. Under such conditions, measured PM10 removal rates over 95 m of downwind transport were reported to be between 86% and 89%, whereas the Gaussian model predicted only a 30% removal. One explanation for the large discrepancy between measurements and model results was the possibility that under the conditions of the study, the dust plume was comparable in vertical extent to the roughness elements, thereby violating one of the model assumptions. Results of the field study reported here and the previous work over rough terrain bound the extent of particle deposition expected to occur under most unpaved road emission scenarios.  相似文献   

10.
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.  相似文献   

11.
Subway particle samples collected at four underground subway stations in Seoul, Korea were characterized by a single-particle analytical technique, low-Z particle electron probe X-ray microanalysis. To clearly identify indoor sources of subway particles, four sets of samples collected in tunnels, at platforms, near ticket offices, and outdoors were investigated. For the samples collected in tunnels, Fe-containing particles predominate, with relative abundances of 75–91% for the four stations. The amounts of Fe-containing particles decrease as the distance of sampling locations from the tunnel increases. In addition, samples collected at the platform in subway stations with platform screen doors (PSDs) that limit air-mixing between the platform and the tunnel showed marked decreases in relative abundances of Fe-containing particles, clearly indicating that Fe-containing subway particles are generated in the tunnel. PM10 mass concentration levels are the highest in the tunnels, becoming lower as the distance of sampling locations from the tunnel increases. The extent of the decrease in PM10 in stations with PSDs is also larger than that in stations without PSDs. The results clearly indicate that Fe-containing particles originating in tunnels predominate in the indoor microenvironment of subway stations, resulting in high indoor PM10 levels, and that PSDs play a significant role in reducing Fe-containing particles at platforms and near ticket offices.  相似文献   

12.
We describe a new experimental methodology based on the contemporary use of two-stage continuous streaker samplers and optical particle counters. This is a complementary approach to size-segregated particulate matter (PM) sampling, and it is able to give information on the elemental size distribution and to assess the contribution of major PM source to size bins. PM samples in the fine and coarse fraction of PM10 have been collected by a two-stage streaker sampler and analyzed by particle-induced X-ray emission (PIXE) to obtain elemental concentration time series with hourly resolution. PM sources and profiles were singled out by positive matrix factorization (PMF). A multi-linear regression of size-segregated number of particles versus the sources, resolved by PMF, made possible the apportionment of size-segregated particles number in a fast and direct way. Results obtained in three sampling sites, located in different urban districts are discussed.  相似文献   

13.
Shale gas has become an important strategic energy source with considerable potential economic benefits and the potential to reduce greenhouse gas emissions in so far as it displaces coal use. However, there still exist environmental health risks caused by emissions from exploration and production activities. In the United States, states and localities have set different minimum setback policies to reduce the health risks corresponding to the emissions from these locations, but it is unclear whether these policies are sufficient. This study uses a Gaussian plume model to evaluate the probability of exposure exceedance from EPA concentration limits for PM2.5 at various locations around a generic wellsite in the Marcellus shale region. A set of meteorological data monitored at ten different stations across Marcellus shale gas region in Pennsylvania during 2015 serves as an input to this model. Results indicate that even though the current setback distance policy in Pennsylvania (500 ft. or 152.4 m) might be effective in some cases, exposure limit exceedance occurs frequently at this distance with higher than average emission rates and/or greater number of wells per wellpad. Setback distances should be 736 m to ensure compliance with the daily average concentration of PM2.5, and a function of the number of wells to comply with the annual average PM2.5 exposure standard.

Implications: The Marcellus Shale gas is known as a significant source of criteria pollutants and studies show that the current setback distance in Pennsylvania is not adequate to protect the residents from exceeding the established limits. Even an effective setback distance to meet the annual exposure limit may not be adequate to meet the daily limit. The probability of exceeding the annual limit increases with number of wells per site. We use a probabilistic dispersion model to introduce a technical basis to select appropriate setback distances.  相似文献   


14.
A source apportionment study was conducted to identify sources within a large elemental phosphorus plant that contribute to exceedances of the National Ambient Air Quality Standards (NAAQS) for 24-hr PM10. Ambient data were collected at three monitoring sites from October 1996 through July 1999, and included the following: 24-hr PM10 mass, 24-hr PM2.5 and PM10-2.5 mass and chemistry, continuous PM10 and PM2.5 mass, continuous meteorological data, and wind-direction-resolved PM2.5 and PM10 mass and chemistry. Ambient-based receptor modeling and wind-directional analysis were employed to help identify major sources or source locations and source contributions. Fine-fraction phosphate was the dominant species observed during PM10 exceedances, though in general, resuspended coarse dusts from raw and processed materials at the plant were also needed to create an exceedance. Major sources that were identified included the calciners, the CO flares, process-related dust, and electric-arc furnace operations.  相似文献   

15.
Three 2-wk seasonal field campaigns were performed in 2003 and 2004 at a sampling site on the southern Tyrrhenian coast of Italy with the aim to investigate the dynamics and characteristics of particle-bound pollutants in the Mediterranean area. Fine (PM(2.5)) and coarse particulate matter (PM(10-2.5)) size fractions were collected by a manual dichotomous sampler on 37-mm Teflon filters over a 24-hr sampling period. On average, 70% of the total PM(10) (PM(2.5) + PM(10-2.5)) mass was associated with the coarse fraction and 30% with the fine fraction during the three campaigns. The ambient concentrations of Pb, Ni, Cr, Zn, Mn, V, Cd, Fe, Cu, Ca, and Mg associated with both size fractions were determined by atomic absorption spectrometry. Ambient concentrations showed differences in their absolute value, ranging from few ng x m(-3) to microg x m(-3), as well as in their variability within the PM(2.5) and PM(10-2.5) size fractions. PM(10) levels were well below the European Union (EU) limit value during the study period with the exception of three events during the first campaign (fall) and five events during the third campaign (spring). Two main sources were identified as the major contributors including mineral dust, transported from North Africa, and sea spray from the Tyrrhenian Sea. Comparing the results with backward trajectories, calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and Total Ozone Mapping Spectrometer-National Aeronautics and Space Administration (TOMS-NASA) maps, it was observed that in central and eastern Europe, the Tyrrhenian Sea and North Africa were the major emission source regions that affected the temporal variations and daily averages of PM(2.5) and PM(10-2.5) concentrations.  相似文献   

16.
We developed and tested a methodology to extract both the size-segregated source apportionment of atmospheric aerosol and the size distribution of each detected element. The experiment is based on the parallel use of a standard low-volume sampler to collect Particulate Matter (PM) and an Optical Particle Counter (OPC). The approach is complementary to size-segregated PM sampling, and it was tested versus a 12-stage cascade impactor. Samples were collected inside the urban area of Genoa (Italy) and their elemental composition was measured by Energy Dispersive-X Ray Fluorescence (ED-XRF). Positive Matrix Factorization (PMF) was applied to time series of elemental concentrations to identify major PM sources, and both PM mass concentration and size-segregated particle number concentration were apportioned. Source profiles and temporal trends extracted by PMF were analyzed together with the OPC data to obtain the size distribution for several elements. The new methodology proved to be reliable for the PM apportionment as well as in providing the elemental concentrations in PM10, PM2.5, and PM1 (PM with aerodynamic diameter, Dae < 10, 2.5, and 1 μm, respectively). The elemental size distributions are in good agreement with those obtained by the cascade impactor for several elements but some discrepancies, in particular for traffic emissions, are stressed and discussed in the text. The new methodology has two main advantages: it only requires standard semi-automatic sampling equipment and compositional analysis and it provides size-segregated information averaged over quite long periods (typically several months). This is particularly important since campaigns with cascade impactors are generally laborious and thus limited to short periods.  相似文献   

17.
Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed.  相似文献   

18.
Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land.  相似文献   

19.
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM2.5 and PM10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM2.5 and PM10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM2.5 and PM10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions.

Implications: This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.  相似文献   


20.
Almond harvest accounts for substantial PM10 (particulate matter [PM] < or =10 microm in nominal aerodynamic diameter) emissions in California each harvest season. This paper evaluates the effects of using reduced-pass sweepers and lower harvester separation fan speeds (930 rpm) on lowering PM emissions from almond harvesting operations. In-canopy measurements of PM concentrations were collected along with PM concentration measurements at the orchard boundary; these were used in conjunction with on-site meteorological data and inverse dispersion modeling to back-calculate emission rates from the measured concentrations. The harvester discharge plume was measured as a function of visible plume opacity during conditioning operations. Reduced-pass sweeping showed the potential for reducing PM emissions, but results were confounded because of differences in orchard maturity and irrigation methods. Fuel consumption and sweeping time per unit area were reduced when comparing a reduced-pass sweeper to a conventional sweeper. Reducing the separation fan speed from 1080 to 930 rpm led to reductions in PM emissions. In general, foreign matter levels within harvested product were nominally affected by separation fan speed in the south (less mature) orchard; however, in samples conditioned using the lower fan speed from the north (more mature) orchard, these levels were unacceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号