首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 721 毫秒
1.
Li SX  Zheng FY  Liu XL  Wu F  Deng NS  Yang JH 《Chemosphere》2005,61(4):589-594
The surface of nanometer size TiO(2) was simply and fast modified by chemical adsorption in saturated solution of 5-sulfosalicylic acid. After surface modification, a stable, yellow surface complex was formed quickly, the wavelength response range of TiO(2) was expanded, it has obvious absorption in the region from 320 to 450 nm; the adsorption efficiency of p-nitrophenol (PNP) by TiO(2) was enhanced from 42% to 84%. The photocatalytic activity was tested on the degradation of PNP. The influences of catalyst and its dosage, pH value, and PNP concentration on the degradation were investigated. On optimal photodegradation conditions, including initial pH 4.0, PNP 5 mg l(-1), catalyst 100 mg, irradiation time 120 min with 160 W high-pressure mercury lamp, the degradation efficiency of PNP was increased from 40% to 88% after surface modification. Surface modification led not only to an increase in the light utilization, but also improved the surface coverage of PNP in comparison with the pure TiO(2). Both of these factors are crucial for the photocatalytic activity of heterogeneous photocatalysis, especially for photodegradation of benzenoid pollutants.  相似文献   

2.
Kinetics and mechanism of TNT degradation in TiO2 photocatalysis   总被引:9,自引:0,他引:9  
Son HS  Lee SJ  Cho IH  Zoh KD 《Chemosphere》2004,57(4):309-317
The photocatalytic degradation of TNT in a circular photocatalytic reactor, using a UV lamp as a light source and TiO(2) as a photocatalyst, was investigated. The effects of various parameters such as the initial TNT concentration, and the initial pH on the TNT degradation rate of TiO(2) photocatalysis were examined. In the presence of both UV light illumination and TiO(2) catalyst, TNT was more effectively degraded than with either UV or TiO(2) alone. The reaction rate was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. In the mineralization study, TNT (30 mg/l) photocatalytic degradation resulted in an approximately 80% TOC decrease after 150 min, and 10% of acetate and 57% of formate were produced as the organic intermediates, and were further degraded. NO(-)(3) NO(-)(2), and NH(+)(4) were detected as the nitrogen byproducts from photocatalysis and photolysis, and more than 50% of the total nitrogen was converted mainly to NO(-)(3)in the photocatalysis. However, NO(-)(3) did not adsorbed on the TiO(2) surface. TNT showed higher photocatalytic degradation efficiency at neutral and basic pH.  相似文献   

3.
以玻璃纤维为载体,将TiO2负载到其表面形成了空间玻璃纤维反应器,引入Fe3+作为掺杂改性离子,形成了负载TiO2/Fe^3+的空间玻璃纤维光催化反应器,并以高压汞灯为光源进行了光催化降解水中苯酚的实验研究,考察了影响苯酚光催化降解的因素,确定了在UV365-250 W光源照射下,pH为3-5,O2通入量1.0 L/(min.L),反应器内上升流速为0.7 m/min等实验条件下,初始浓度为30 mg/L的苯酚废水经120 min光催化反应后,降解率可达到85%,矿化率可达80%。  相似文献   

4.
The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.  相似文献   

5.
以玻璃纤维为载体,将TiO2负载到其表面形成了空间玻璃纤维反应器,引入Fe3+作为掺杂改性离子,形成了负载TiO2/Fe3+的空间玻璃纤维光催化反应器,并以高压汞灯为光源进行了光催化降解水中苯酚的实验研究,考察了影响苯酚光催化降解的因素,确定了在UV365~250 W光源照射下,pH为3~5,O2通入量1.0 L/(min.L),反应器内上升流速为0.7 m/min等实验条件下,初始浓度为30 mg/L的苯酚废水经120 min光催化反应后,降解率可达到85%,矿化率可达80%。  相似文献   

6.
The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir-Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm-1 and 0.984 ppm min-1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

7.
Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst   总被引:1,自引:0,他引:1  
Ma YS  Chang CN  Chiang YP  Sung HF  Chao AC 《Chemosphere》2008,71(5):998-1004
Photocatalytic degradation of lignin was studied with the use of catalysts TiO(2) and Pt/TiO(2). The influence of several experimental parameters, i.e. pH, catalyst dosage and illumination on lignin degradation was investigated. The results showed that application of UV irradiation alone has almost no effect on the reduction of dissolved organic carbon (DOC) and American Dye Manufacture Institute value (ADMI). However, the addition of TiO(2) and Pt/TiO(2) reduced the original DOC (251 mg l(-1)) by more than 40% within 30 min of treatment and the reaction can be simulated with pseudo-first order kinetics. Rapid degradation of lignin was observed in acidic solution using either TiO(2) or Pt/TiO(2) as the catalyst compared to high pH cases. The content of Pt in the Pt/TiO(2) catalyst is 1%. In addition, too much catalyst addition has not increased the DOC and ADMI reduction proportionally. The investigation also indicated that the photocatalytic degradation rates could be enhanced 1-6 times faster after doping TiO(2) with Pt in different pH cases. A modified Nernst type model was adopted to simulate the decoloring process using TiO(2) and Pt/TiO(2) based on the profiles of oxidation reduction potential during the photocatalytic reaction. The developed equation can be used to predict the color removal efficiency of lignin wastewater by the photocatalytic process.  相似文献   

8.
研究了负载于玻璃上的固定化催化剂TiO2膜光催化降解水中三氯乙醛的效果,探讨了TiO2膜光催化降解三氯乙醛的机理,考察了溶液pH值和三氯乙醛初始浓度埘TiO2膜光催化降解三氯乙醛的影响,并研究了固定化催化剂TiO2膜光催化降解三氯乙醛的动力学.结果表明,固定化催化剂TiO2膜光催化降解水中三氯乙醛的效果良好,当三氯乙醛初始浓度为2.25 mg/L时,在紫外光照时间3 h下,三氯乙醛的降解率高达100%.在相司紫外光照时间下,三氯乙醛的光催化降解率随着三氯乙醛初始浓度的增大而下降.在溶液pH=6.5时,三氯乙醛的降解效率最高.固定化催化剂TiO2膜光催化降解三氯乙醛的反应遵循一级反应动力学,反应速率常数随三氯乙醛初始浓度的增大而减小.  相似文献   

9.
The present work deals with photocatalytic degradation of an organophosphorus pesticide, phosalone, in water in the presence of TiO2 particles under UV light illumination (1000 W). The influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time, stirring rate, and distance from UV source, on the photodegradation efficiency of phosalone was investigated. The degradation rate of phosalone was not high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. The half-life (DT50) of a 20 ppm aqueous solution of phosalone was 15 min in optimized conditions. The plot of lnC (phosalone) vs. time was linear, suggesting first order reaction (K=0.0532 min(-1)). The half-life time of photomineralization in the concentration range of 7.5-20 ppm was 13.02 min. The efficiency of the method was also determined by measuring the reduction of Chemical Oxygen Demand (COD). During the mineralization under optimized conditions, COD decreased by more than 45% at irradiation time of 15 min. The photodegradation of phosalone was enhanced by addition of proper amount of hydrogen peroxide (150 ppm).  相似文献   

10.
Liang HC  Li XZ  Yang YH  Sze KH 《Chemosphere》2008,73(5):805-812
In this study, the highly-ordered TiO(2) nanotube (TNT) arrays on titanium sheets were prepared by an anodic oxidation method. Under UV illumination, the TNT films demonstrated the higher photocatalytic activity in terms of 2,3-dichlorophenol (2,3-DCP) degradation in aqueous solution than the conventional TiO(2) thin films prepared by a sol-gel method. The effects of dissolved oxygen (DO) and pH on the photocatalytic degradation of 2,3-DCP were investigated. The results showed that the role of DO in the 2,3-DCP degradation with the TNT film was significant. It was found that 2,3-DCP in alkaline solution was degraded and dechlorinated faster than that in acidic solution whereas dissolved organic carbon removal presented an opposite order in dependence of pH. In the meantime, some main intermediate products from 2,3-DCP degradation were identified by a (1)H NMR technique to explore a possible degradation pathway. A major intermediate, 2-chlororesorcinol, was identified from the 2,3-DCP decomposition as a new species compared to the findings in previous reports. Photocatalytic deactivation was also evaluated in the presence of individual anions (NO(3)(-), Cl(-), SO(4)(2-), and H(2)PO(4)(-)). The inhibition degree of photocatalytic degradation of 2,3-DCP caused by these anions can be ranked from high to low as SO(4)(2-)>Cl(-)>H(2)PO(4)(-)>NO(3)(-). The observed inhibition effect can be attributed to the competitive adsorption and the formation of less reactive radicals during the photocatalytic reaction.  相似文献   

11.
Photocatalytic degradation of imazethapyr herbicide at TiO2/H2O interface   总被引:2,自引:0,他引:2  
The photocatalytic degradation of imazethapyr, a herbicide of the imidazolinone family, was investigated in an aqueous suspension of titanium dioxide used as a catalyst. A pseudo-first order kinetic model was employed to discuss the results. The effect of catalyst loading, initial concentration of imazethapyr, hydrogen peroxide, pH value, and temperature were investigated. Imazethapyr disappearance as a function of irradiation time was analyzed by HPLC. The ammonium ion formation was determined spectrophotometrically at 694 nm. The degradation was observed to proceed more favorably at natural pH (ca. 4.4) when the pH was varied in the range from 2 to 11. The addition of hydrogen peroxide to the TiO2 suspension enhanced the degradation rate constant up to 5.0x10(-3) mol l-1, but decreased it at higher concentrations. The degradation rate constants decreased by 19% with a temperature increase from 20 to 40 degrees C in the TiO2 suspension, whereas a 16% increase in imazethapyr direct photolysis was observed for the same temperature range. This behavior indicates the occurrence of physisorption between TiO2 and imazethapyr molecules.  相似文献   

12.
以亚甲基蓝(MB)作为表面修饰剂,采用简单的化学吸附法制备亚甲基蓝表面修饰的纳米TiO2光催化剂(TiO2-MB)。经表面修饰后,TiO2-MB光催化剂波长响应范围红移至可见光区575 nm处。探讨了光催化剂量、光照时间和溶液pH值对TiO2-MB光催化降解造纸废水的影响;研究了纳米TiO2-MB对造纸废水的暗吸附规律和光降解性能。结果表明:纳米TiO2-MB对造纸废水的吸附规律都较好地符合Langmuir和Freundlich吸附等温模型,属于吸热反应;光催化降解动力学符合Langmuir-Hinshelwood动力学模型。在160 W高压汞灯光照80 min,3.0 g/L纳米TiO2-MB光催化降解pH=2.0的造纸废水(COD:2 069.8 mg/L),COD去除率可达94.7%,处理效果远高于避光条件下。光催化剂经8次使用仍具有较高的催化活性。  相似文献   

13.
The present investigation covers immobilization of TiO2 using a simple solid state dispersion technique over mesoporous Al-MCM-41 support for the treatment of isoproturon herbicide. Catalysts are characterized by XRD, X-ray photo electron spectroscopy (XPS), surface area, UV-Vis diffused reflectance spectra (DRS), SEM and TEM. A detailed photocatalytic degradation study of isoproturon under solar light in aqueous suspensions is reported. The 10 wt% TiO2/Al-MCM-41 composite system found to be optimum with high degradation activity. The reaction follows pseudo-first order kinetics. The parameters like TiO2 loading over Al-MCM-41, amount of catalyst, concentration of substrate, pH effect, durability of the catalyst, activity comparison of TiO2 and Al-MCM-41 supported system are studied. The mineralization of isoproturon is monitored by TOC. Based on the degradation products detected through LC-MS, a plausible degradation mechanism is proposed. The data indicates that TiO2/Al-MCM-41 composite system is an effective photocatalyst for treatment of isoproturon in contaminated water.  相似文献   

14.
以工业硫酸氧钛为原料水解制得SO42-/TiO2光催化剂,并以苯酚为目标降解物,考察了SO24-/TiO2的光催化性能。结果表明:随着SO42-/TiO2制备过程中焙烧温度的升高,其光催化活性逐渐增加,650℃焙烧获得的SO24-/TiO2的光催化活性最好,此后再升高温度会因催化剂中硫的挥发而下降;在确定苯酚原液初始浓度为50 mg/L条件下,SO42-/TiO2的光催化降解苯酚的最佳工艺条件为反应时间2 h、苯酚pH为7、催化剂用量1 g/L。XRD、SEM和FTIR的分析结果显示实验温度下制得的SO42-/TiO2均为锐钛型TiO2;其间掺杂的SO24-在TiO2表面分散性较好,没有聚集成大的颗粒;红外分析的结果初步判定低温(<550℃)焙烧制得的催化剂SO42-在TiO2表面是螯合双配位吸附,高温焙烧时(>550℃)SO42-在TiO2表面是桥式配位吸附。  相似文献   

15.
Monteagudo JM  Durán A 《Chemosphere》2006,65(7):1242-1248
The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.  相似文献   

16.
Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts   总被引:6,自引:0,他引:6  
The photocatalytic degradation of pentachlorophenol (PCP) in aqueous solution was investigated using TiO2 catalysts. The samples were prepared by the sol-gel method using different gelation pH and different calcination temperatures. The solids were characterized by specific surface area, X-ray diffraction, UV-Vis absorbance, FTIR and pentachlorophenol adsorption. The catalytic activity of the solids was evaluated in a conventional photoreactor at 298 K using 30 ppm of pentachlorophenol. It was found that the reaction follows a first-order reaction and the kinetic constant values change slightly with the pH of gelation and more significantly with the calcination temperature.  相似文献   

17.
Photocatalytic degradation and mineralization of pesticides are studied over TiO(2) supported mesoporous SBA-15 composite system using solar light. TiO(2) is immobilized over SBA-15 by solid sate dispersion method. The catalysts are characterized by XRD, surface area, UV-Vis diffused reflectance spectra, SEM and TEM. The detailed photocatalytic degradation studies are carried out over TiO(2), SBA-15 and different TiO(2) wt% supported SBA-15. The activity evaluation parameters such as catalyst amount, pH, and pollutant initial concentration are studied taking isoproturon as a model compound and established conditions for pesticide degradation. The optimum degradation is achieved over 10 wt% TiO(2)/SBA-15 within 30 min and the reaction is following pseudo-first order kinetics. The isoproturon mineralization is monitored with TOC reduction and it takes around 9h for disappearance. The commercial pesticide solutions containing imidacloprid and phosphamidon are also successfully degraded over these composites with the established conditions. The data indicates that 10 wt% TiO(2)/SBA-15 composite is an effective and highly active system for the pesticide degradations.  相似文献   

18.
The photooxidation of C2H5NH2, (C2H5)2NH, HOC2H4NH2, (HOC2H4)2NH and (HOC2H4)3N using TiO2 and Pt/TiO2 as photocatalysts has been investigated. A laboratory set up was designed and a study on the influence of the concentration of the photocatalyst, the pH-value and the structure of the amine performed. The photocatalytic process was optimized with respect to the concentrations of the model substances during degradation. The decrease of the amine concentrations was found to be maximum at a pH of 10. The time-dependence of the formation of cationic breakdown products, such as NH3/NH4 and short-chain alkyl- and alkanolamines was studied by analyses with single column ion chromatography. The experimental data show that the photodegradation follows a Langmuir-Hinshelwood kinetic. The mineralization of the model substances also was monitored by measurements of the decrease of the TOC and of the formation of NO2 and NO3. The different mineralization efficiencies for the model substances studied are discussed with regard to their structure and adsorption behaviour on the photocatalyst. A possible breakdown mechanism involving the electrophilic attack of the hydroxyl radical is given. The applicability of the TiO2-assisted photocatalytic degradation of C2H5NH2 and (C2H5)2NH was tested at the pilot plant-scale with real solar radiation. The degradation rates and products obtained were similar to those found in the laboratory experiments.  相似文献   

19.
The influence of humidity on the decomposition of gas phase chlorobenzene (CB) was studied in a batch photocatalytic reactor using TiO(2) (anatase). Increasing relative humidity (>7% at 25 degrees C and 1atm) resulted in an increasingly detrimental effect on the adsorption and photocatalytic decomposition rate of CB. Mechanistic analysis indicates that the relative hydrophilic/hydrophobic nature of a given chemical should dictate adsorption onto or penetration through water to the TiO(2) surface. It is suggested that multiple layers of water molecules are formed at the TiO(2) interface with air, even at low relative humidities. The multiple-layered film of water retards/prevents CB from reaching the reactive TiO(2) surface or contacting radical species in the boundary layer.  相似文献   

20.
Xu XR  Li HB  Gu JD 《Chemosphere》2006,63(2):254-260
Hexavalent chromium and methyl tert-butyl ether (MTBE) are two important environmental pollutants. Simultaneous decontamination of Cr(VI) and MTBE was studied by UV/TiO2 process. The influences of pH and the concentrations of pollutants on the kinetics of the photocatalytic reactions were evaluated. Dark adsorption tests showed that the acidic pH favored the adsorption of Cr(VI) while neutral pH favored the adsorption of MTBE. Under UV irradiation, Cr(VI) reduction was observed in Cr(VI)/TiO2 system, and MTBE oxidation was observed in MTBE/TiO2 system. The system containing Cr(VI) and MTBE by UV/TiO2 process demonstrated the synergistic effect between oxidation of MTBE and reduction of Cr(VI). The results demonstrated that two pollutants Cr(VI) and MTBE could be eliminated simultaneously by UV/TiO2 process. tert-Butyl formate, tert-butyl alcohol and acetone were identified as primary degradation products of MTBE by gas chromatography-mass spectrometry in the degradation of MTBE by UV/TiO2 process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号