首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
参照IPCC清单中的方法估算了2000~2012年中国流通业CO2排放量;运用LMDI方法分解分析了研究期间流通业CO2排放变化的影响因素;并基于DPSIR框架构建流通业脱钩努力指数模型测度了流通业CO2排放脱钩效应.结果表明:2000~2012年间,流通业CO2排放量增长明显,期间累计排放总量为692482.37万t;产业规模效应是CO2排放增量的主要因素,能源强度效应是CO2排放减量的主要因素,分别引起CO2排放量增加了67435.72万t和减少了12358.67万t,能源结构和排放因子效应对CO2排放影响有限,分别引起CO2排放量增加了519.89万t和减少了2590.94万t;流通业CO2排放脱钩状态呈“弱脱钩—未脱钩—弱脱钩—未脱钩”的变化特征,脱钩努力指数值呈“ ”型变化趋势;目前能源强度是决定流通业CO2排放脱钩状态的关键因素,但随着能源强度的下降幅度越来越小,未来更需要通过调整能源结构和降低排放因子来实现流通业CO2排放脱钩.  相似文献   

2.
使用IPCC推荐的方法与投入-产出模型分别测算中国家庭直接与间接CO_2排放.从家庭户城镇化的视角,引入对数平均迪氏指数分解(LMDI)模型,将家庭CO_2排放分解为户数效应、城镇化效应、生活水平效应、生活方式效应、能源强度效应.结果表明:1995~2012年,城乡平均家庭规模分别减少0.37人/户、0.6人/户,城镇家庭CO_2排放增加17.4亿t,而农村家庭CO_2排放减少了0.79亿t;收入水平和城乡家庭户数分别对家庭CO_2排放增长贡献24.9亿t、4.64亿t;家庭户城镇化水平拉动3.14亿t间接CO_2排放;城乡家庭消费结构具有不同程度的高碳化特征,对间接CO_2排放的累计贡献度分别为10.3%、12.8%;能源强度效应累计抑制21.1亿t CO_2排放.  相似文献   

3.
赵敏 《中国环境科学》2012,32(9):1583-1590
以对数平均指数法(LMDI)方法为基础,探讨了包括生活能耗在内的上海市终端能源消费CO2排放影响因素的分解方法,定量研究了能源强度下降、能源结构优化、产业结构调整、经济发展规模和人口数量等影响因素对CO2排放变化量的贡献率.研究表明,上海市2005~2009年CO2排放增长了2949万t,如果不采取任何减缓措施,经济增长和人口数量增加将导致CO2排放增长量相当于现在的2.5倍.能源强度下降、能源结构优化和产业结构调整起到了减缓CO2排放增长的作用,对减缓CO2排放增长的贡献率分别为-98%、-50%和-22%.与2000~2005年对比分析发现,工业部门能源强度下降和能源结构优化的减缓作用都有所下降,而产业结构调整开始发挥减排的作用,但贡献率还很低.生活能耗的CO2排放影响因素中,相较于人口数量增长,人均生活能耗上升是导致CO2排放增加的主要因素,且贡献率逐渐增大.  相似文献   

4.
近年来世界各国大力发展生物能源用于替代化石燃料.通过全生命周期评价的方法,对四种主要生物能源的温室气体减排量进行了比较.结果表明,同种生物能源净能比(NER)和温室气体净减排量(GGENR)与原料相关.纤维素燃料乙醇的GGENR(52 603 kg CO2/TJ)高于玉米乙醇(10 660 kg CO2/TJ).而巴西生产的甘蔗乙醇GGENR则达到最大值,61 418 kg CO2/TJ.大豆生物柴油的GGENR比微藻高出86%,分别为36 121 kg CO2/TJ和19 399 kg CO2/TJ.对于生物燃气和生物质直燃,由于全生命周期过程中外源能量输入很少,其GGENR分别达到56 100 kg CO2/TJ和98 300 kg CO2/TJ.  相似文献   

5.
采用IPCC报告(2006版)提供的计量方法与碳含量缺省值,对南京市能源消费碳排放进行了计量研究.结果表明:从2005~2009年,CO2排放总量从8.05×107t增加到1.02×108t,人均CO2排放量从11.7 t/a增加到13.2 t/a,但CO2排放强度持续降低,从3.34 t/万元下降到2.41 t/万元...  相似文献   

6.
王凡  刘宇  卢长柱  田刚  张凡  岳涛 《环境工程》2014,32(1):140-143
通过对2 t/h层燃锅炉燃烧条件的分析,提出低氮燃烧技术改造方案,并进行燃料分级燃烧、空气分级燃烧和烟气循环对NOx排放控制影响的研究。研究结果表明:采用分室配风实现空气分级燃烧和燃料分级燃烧,NOx排放量由260~359 mg/m3降为137~182 mg/m3;循环烟气率达10%~15%时,烟气循环可实现降低NOx排放3%~5%;相同燃烧状况下,低氮燃烧技术优化后NOx的排放浓度由低氮燃烧改造前的301~430 mg/m3降低到137~182 mg/m3。层燃锅炉低氮燃烧改造后烟气中NOx浓度低于200 mg/m3,可作为有效的NOx控制技术。  相似文献   

7.
为掌握重型天然气车在实际道路行驶过程中的排放特性,使用便携式车载排放测试系统(PEMS)对2辆国Ⅴ重型天然气车(简称“国Ⅴ车辆”)和2辆国Ⅵ重型天然气车(简称“国Ⅵ车辆”)进行实际道路排放测试,分析了CO和NOx的排放特征和不同工况下的排放因子. 结果表明:①国Ⅴ车辆在3种代表性道路类型(市区路、市郊路、高速路)下CO和NOx的高排放区主要分布在中低速区域的加速阶段,而国Ⅵ车辆CO和NOx的高排放区在市区和市郊路上主要集中在速度大于30 km/h区间,在高速路两种污染物的高排放区分布较为零散. ②根据MOVES模型划分机动车比功率区间(VSP Bin)后发现,国Ⅵ车辆在Bin 11~Bin 18区间,CO和NOx排放速率基本稳定且处于较低水平;在Bin 21~Bin 28区间,CO和NOx排放速率均随VSP的增加而逐渐升高. ③国Ⅴ车辆综合工况下CO和NOx排放因子分别为国Ⅵ车辆的1.1~3.9和3.3~8.2倍,其中,在市区路分别为3.0~25.0和11.3~30.2倍. ④国Ⅴ车辆的NO2/NOx(浓度比,下同)远高于国Ⅵ车辆,且在高速路国Ⅴ和国Ⅵ车辆的NO2/NOx均最低. 此外,对比不同研究的测试结果发现,本研究国Ⅵ车辆的CO和NOx排放因子高于其他研究中国Ⅵ重型柴油车. 研究显示,国Ⅵ车辆的CO和NOx排放因子均低于国Ⅴ车辆,且在市区路下与国Ⅴ车辆差距更明显,因此,推广使用国Ⅵ天然气车,逐步淘汰采用稀薄燃烧技术的天然气车,能有效减少NOx的排放.   相似文献   

8.
中国大陆CO人为源排放清单   总被引:31,自引:9,他引:31  
在经济部门、燃料类型、燃烧方式/工艺技术3个层次对排放源进行划分的基础上,根据各类源的能源消耗/产品产量及相应的排放因子,建立了中国大陆2001年分省区CO人为源排放清单.结果表明,中国大陆2001年CO人为源排放量为1·5×108t.生物质、煤炭和汽油是CO排放的主要来源,分别占总排放的35·24%、31·67%和20·31%;CO主要来源于居民生活(32·15%)、工业燃烧(23·77%)和机动车排放(21·75%).CO排放的地区分布极不均衡,山东、河北、山西、辽宁等12个省区的年排放量在5·0×106t以上,集中了全国总排放的2/3;上海、北京和天津3市的年均排放强度最高(大于100t·km-2·a-1);而西藏、青海、新疆和内蒙古4个省区的CO排放强度均不足5t·km-2·a-1·  相似文献   

9.
天然气水合物是一种广泛地存在于海底沉积物和陆地高纬度永久冻土带中的矿物,含碳量超过全球所有其他来源有机碳的总和。然而天然气水合物在自然界极不稳定,温压条件的微小变化都会引起其分解而释放出甲烷气体。一般情况下,释放出的甲烷大部分可能会被氧化成CO2而溶解在海水中,进入大气中的量不足以对气候产生影响。只有在发生巨变事件的情况下,如海底大规模的沉积物滑塌,才会将大量的甲烷带到海面并释放到大气中,从而对全球气候和环境产生严重的影响。因此,在开发利用天然气水合物之前,必须有超前的防范措施,以防止或尽可能减少天然气水合物对环境造成的不良影响。  相似文献   

10.
基于发电行业节能减排技术的现有应用规划,预测3种不同的GDP增长情景,即减速发展,基准情景和高速发展情景下,若能实现我国现有关于发电行业节能减排技术的规划目标,2020年发电行业的CO2排放量将达到35.32,39.15,43.20亿t.同时基于中国2020年碳强度减排承诺,计算得国家2020年CO2排放目标在不同发展情景下将达到97.30~127.96亿t不等.结合上述结果讨论,发电行业规划目标相符要求2020年的CO2排放比例为33.27%~36.82%.结果表明,若能实现我国现有关于发电行业节能减排技术的规划目标,则对应于不同的GDP增长速度,发电行业总碳排放量能够完成国家承诺碳强度减排的分解目标.  相似文献   

11.
长江口崇明东滩潮间带温室气体排放初步研究   总被引:7,自引:2,他引:5  
采用原位静态箱法对长江口崇明东滩(CM)湿地3种主要温室气体CO2,CH4和N2O的排放、吸收通量进行现场测定。结果表明,春季(5月)崇明东滩湿地是大气CH4的排放源。中潮滩暗箱(CM-2b)CH4的排放通量为394.22μg/m2.h,明箱(CM-2w)为492.58μg/m2.h;低潮滩暗箱(CM-3b)CH4的排放通量为84.89μg/m2.h,明箱(CM-3w)为76.16μg/m2.h,植被和有机质含量的不同是造成中、低潮滩CH4通量差异的主要因素。中潮滩春季草的光和作用可以降低CO2和N2O的排放,明箱内表现为对CO2(-67.45 mg/m2.h)和N2O(-21.79μg/m2.h)的吸收,同时呼吸作用增加了潮滩-大气界面CO2和N2O的排放(CO2,730.27 mg/m2.h;N2O,109.72μg/m2.h)。而低潮滩(CM-3)表现为CO2和N2O的汇,但吸收的通量值较小。  相似文献   

12.
应用车载式尾气排放测试设备对北京国Ⅲ、国Ⅳ排放标准的柴油公交车和国Ⅲ排放标准压缩天然气公交车在实际道路上的尾气CO2排放特征进行了实测研究,测试时间为30 787 s,行驶里程达到168.58 km,共获得30 787组有效数据,测试数据能够反映车辆在实际道路上的排放特征。3种类型车辆测试期间在实际道路上的CO2排放因子分别为(1.10±0.24)g/m、(0.99±0.23)g/m和(1.02±0.21)g/m。车辆的排放状况与车辆的行驶工况有密切关系,车速较低,加速度越大,CO2排放速率和排放因子越大,车辆在匀速且车速较快时排放速率和排放因子较低。  相似文献   

13.
排放强度承诺下的CO2排放总量控制研究   总被引:8,自引:1,他引:7       下载免费PDF全文
王金南  蔡博峰  严刚  曹东  周颖 《中国环境科学》2010,30(11):1568-1572
单位国内生产总值(GDP)CO2排放下降承诺的本质是一种CO2排放总量控制.提出了强度承诺下的CO2排放总量控制模型,给出了不同情景方案下的2020年全国CO2排放总量控制目标,并提出86.24亿t的总量控制目标,其相对基准情景减排12.63亿t,相对减排12.8%.在实现这一目标中,能源结构调整和节能减排的贡献分别为33%和48%.在“十二五”和“十三五”期间,非化石能源消费比例分别提高至13%和15%,两期分别每年投入1500亿元和2000亿元.2020年的减排成本约在1300~2100亿元之间,占当年GDP约0.3%.  相似文献   

14.
降低碳排放评估的不确定性对于减排政策选择和成本效益分析十分重要,基于北京市227个天然气锅炉样本检测数据,分析影响CO2排放因子的关键参数特征,评估北京市天然气锅炉本地化CO2排放因子,采用蒙特卡洛模型对排放因子的不确定性进行分析,并将其与IPCC、国家清单、城市清单等同类排放因子进行了比较.结果表明:北京市天然气锅炉CO2排放因子为2.052 kg/m3,90%概率分布范围为1.982~2.086 kg/m3;基于热值的CO2排放因子推荐值为55.829 kg/GJ,90%概率分布范围为55.788~55.908 kg/GJ,排放因子的不确定范围为-3.59%~1.57%.北京市天然气锅炉CO2排放因子稍低于IPCC2006国家温室气体清单指南推荐缺省值(0.5%).天然气低位热值对排放因子的影响最大,其方差贡献率达94%,而单位热值含碳量和氧化率二者的方差贡献率仅占6%.通过北京市本地实测数据和蒙特卡洛模型模拟,给出了天然气锅炉排放因子及概率分布的范围,提高了评估精度,有助于改进北京市温室气体排放清单活动水平的数据收集工作,指导并降低天然气工业锅炉CO2排放因子不确定性.   相似文献   

15.
选取北京市地区典型生物质燃料(玉米芯、玉米秆、黄豆秆、草梗、松木、栗树枝、桃树枝)以及民用煤(烟煤、蜂窝煤)在实验室内进行了模拟燃烧实验,采用Thermo Fisher 42i型化学发光NO-NO2-NOx分析仪、43i型脉冲荧光SO2分析仪、48i型CO分析仪对烟气中的NOx、SO2、CO进行全程在线监测;对燃烧产生的颗粒物样品进行采集,采用ICS 90A、ICS2000离子色谱仪对不同粒径段颗粒物中的水溶性无机离子进行测定.研究表明:3类民用燃料排放因子均值由大到小的顺序,SO2为民用煤 > 薪柴 > 秸秆;CO为秸秆 > 民用煤 > 薪柴;NOx为薪柴 > 民用煤 > 秸秆.薪柴燃烧产生的PM2.5中SO42-含量最高,占总水溶性无机离子的22%~30%;秸秆类燃烧产生PM2.5中的水溶性无机离子K+占绝对优势,占总水溶性无机离子的36%~49%,其次为Cl-或SO42-,两者之和占总水溶性无机离子的35%~44%.3类民用燃料中秸秆类燃烧排放的颗粒物中水溶性无机离子的排放因子最高,其次为薪柴类燃料,民用煤最低.本实验对不同粒径段颗粒物中9种水溶性无机离子进行了分析(Na+、K+、Mg2+、Ca2+、NH4+、F-、Cl-、NO3-、SO42-),薪柴类燃料燃烧排放的颗粒物中,Na+、K+、NH4+、F-的排放因子在0~2.5μm粒径段内最大,Mg2+和Ca2+的排放因子在2.5~10μm粒径段内最大.秸秆类燃料除Ca2+、Mg2+外,其余离子的排放因子均在0~2.5μm粒径段内达到最大.对于烟煤而言,除了K+、Mg2+和Ca2+外,其余离子的排放因子均在0~2.5μm粒径段内达到最大;蜂窝煤中Na+、K+、Cl-、NO3-、SO42-的排放因子均在0~2.5μm粒径段内达到最大.  相似文献   

16.
西安市人为源大气氨排放清单及特征   总被引:10,自引:7,他引:3  
根据西安市各类氨排放源活动水平数据,采用合理的估算方法和排放因子,建立了2013年西安市人为源大气氨排放清单.结果表明,2013年西安市人为源大气氨排放量为47.17×10~3t,排放强度为4.57 t·km~(-2);畜禽养殖和氮肥施用是排放贡献最大的两个人为源,氨排放量分别为20.55×10~3t和17.51×10~3t,占排放总量的80.68%;畜禽养殖中,牛和猪是最大的排放源,占畜禽养殖排放总量的75.03%;临潼区是排放量最大行政区,排放量为10.73×10~3t,分担率为23.22%;阎良区的排放强度最大,达到14.75 t·km~(-2).  相似文献   

17.
上海市能源CO_2排放及节能减排的减碳效果分析   总被引:2,自引:2,他引:0  
以 2005 年为基准,采用 IPCC 清单指南推荐的方法测算了上海市能源活动产生的 CO2 排放清单。并采用情景分析方法,预测了高碳情景和低碳情景下上海市能源需求及相应的二氧化碳排放趋势,探讨了节能减排等低碳政策所产生的碳削减的潜力。研究表明,2005 年上海市能源活动所排放的 CO2 总量为 1.72 亿 t,其中,能源加工转换产生的 CO2 排放量为 7740 万 t,占排放总量的 44%;工业次之,占 30%;交通运输的排放比例为 16%。煤炭和石油的消费是导致 CO2 排放的主要原因,2005 年煤炭所带来的 CO2 排放量为1.10 亿 t,油品所产生的 CO2 排放量为 0.58 亿 t,分别占到能源活动 CO2 排放总量的 64.0%和 33.7%。 2005 年上海市人均 CO2 排放量为9.68 t/人,是世界平均水平的 2.4 倍,是中国平均水平的 3.8 倍。研究表明,在低碳政策下,上海能源需求将有所控制,到 2020 年全市能源需求总量为 1.6 亿 t 标煤, 比高碳情景节约 1.4 亿 t 标煤。节能减排政策还将使得全市能源活动 CO2 排放比高碳情景显著下降,到2020 年全市 CO2 排放量为 3.26 亿 t,比高碳情景减少 3.1 亿 t,低碳政策所产生的碳减排效益十分明显。  相似文献   

18.
亚热带稻田生态系统CO2排放及影响因素   总被引:11,自引:0,他引:11       下载免费PDF全文
采用静态箱法对亚热带稻田生态系统CO2排放进行了定位观测.结果表明,水稻生长条件下的稻田CO2总排放通量(Rt)随晚稻生育期进程波动幅度较大,平均值为926.2mg/(m2·h);土壤CO2排放通量(Rs)则波动较小,平均值为285.4mg/(m2·h).二者与气温、不同土层(0,5,10,15cm)土壤温度均呈极显著的指数相关关系,温度系数(Q10)分别为2.33和1.70.稻田生态系统CO2累积排放量与水稻生物量间存在极显著的对数关系.在晚稻整个生育期,稻田生态系统从大气中净固定碳量为3.85t/hm2.  相似文献   

19.
乌鲁木齐市城区机动车大气污染物排放特征   总被引:4,自引:1,他引:3  
对乌鲁木齐市城区车辆信息(包括车流量和车辆构成、车辆控制技术水平、车辆行驶工况、车辆启动分布等)进行调研和测试,并根据IVE模型计算得到机动车污染物排放清单,获得分车型、燃料类型及启动/运行方式的机动车污染物排放分担率.结果表明:2011年乌鲁木齐市机动车CO、NO_x、HC和PM的排放量分别为20.22×104、2.60×104、1.84×104和0.44×10~4t·a~(-1),机动车污染物排放分担率差别显著,乘用车、公交车和重型货车是CO和HC主要排放源;重型货车和乘用车是NO_x的主要排放源;重型货车是PM的主要排放源.汽油车是CO和HC排放的主要来源,柴油车是NO_x和PM排放的主要来源,天然气车各类污染物排放量均较低.控制柴油重型货车是消减机动车污染物排放的重要方式.  相似文献   

20.
采用IPCC推荐的温室气体清单计算方法,从温室气体排放总量、排放强度等方面分析了华中地区畜牧业温室气体排放现状;根据不同牲畜饲养数量,采用Logisticgrowth model、Gompertzcurve model等非线性时间序列模型模拟2030年华中地区牲畜数量,并计算畜牧业温室气体排放量.结果显示,2015年华中地区温室气体排放为6289.09万t CO2-eq,单位GDP温室气体排放量为1.13万t CO2-eq/亿元,单位肉类产量排放强度为3.73t CO2-eq/t;2030年华中地区畜牧业温室气体排放总量约为4990.06(温室气体排放预测1)~5932.74万tCO2-eq(温室气体排放预测2).应当进一步优化畜牧业饲养技术及条件来提高产业温室气体排放效率,科学合理的规划不同牲畜的饲养规模,优化牲畜饲养结构来降低畜牧业温室气体排放量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号