首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
北京市机动车尾气排放因子研究   总被引:21,自引:10,他引:11  
樊守彬  田灵娣  张东旭  曲松 《环境科学》2015,36(7):2374-2380
通过调研北京市机动车车型构成、车辆行驶工况、环境温度、油品品质等基础数据,利用COPERTⅣ模型计算了机动车尾气中CO、NOx、HC和PM的排放因子.应用车载测试系统对典型轻型汽油客车和柴油货车的实际道路排放因子进行测量,并将测量结果与模型计算结果对比,结果发现国Ⅳ标准下,轻型汽油客车的CO排放因子的实测数据是模型数据的0.96倍,NOx的实测数据是模型数据的0.64倍,HC的实测数据是模型数据的4.89倍.对于国Ⅲ排放标准的柴油货车,轻型、中型和重型货车的CO排放因子,实测数据分别是模型数据的1.61、1.07和1.76倍,NOx排放因子的实测数据是模型数据的1.04、1.21和1.18倍,HC排放因子的实测数据是模型数据的3.75、1.84和1.47倍,PM排放因子则为模型数据是实测数据的1.31、3.42和6.42倍.  相似文献   

2.
轻型柴油车实际道路瞬时排放模拟研究   总被引:2,自引:2,他引:0  
黄成  陈长虹  戴璞  李莉  黄海英  程真  贾记红 《环境科学》2008,29(10):2975-2982
系统介绍了CMEM模型及其计算原理.以轻型柴油车为研究对象,给出了模型的主要输入参数,并计算了车辆在实际道路上的瞬时排放结果,并根据实测数据对模拟结果进行了验证.测试车辆的CO、THC、NOx和CO2排放因子为0.81、0.61、2.09和193 g·km-1,相同线路模拟所得的排放因子分别为0.75、0.47、2.47和212 g·km-1,相关系数分别达到0.69、0.69、0.75和0.72.通过模拟发现,轻型柴油车在实际道路微观区域内的排放水平随交通条件和行驶状态波动明显,采用CMEM模型能够较好地反映该车排放随行驶工况的瞬时变化趋势.应用CMEM模拟发现,改善典型交叉口区域的交通条件后,轻型柴油车在模拟区域内的CO、THC、NOx和CO2排放量分别削减了50%、47%、45%和44%,排放改善效果显著.从研究结果来看,利用微观尺度模型来分析混合车流在一些典型交通区域的瞬时排放变化是必要的,也是可行的,对于评价道路交通规划的环境效果具有一定的指导意义.  相似文献   

3.
北京机动车尾气排放特征研究   总被引:7,自引:0,他引:7  
近年来随着机动车保有量的快速增加,北京市机动车排放污染受到越来越多的关注。本研究应用COPERTⅣ模型计算了北京不同类型机动车排放因子,根据保有量和年均行驶里程等基础数据计算了2009年机动车尾气污染物排放量;调查了北京典型道路车流量和车辆运行速度等参数,计算机动车尾气排放强度,得出了典型道路不同污染物的综合排放因子;应用COPERTⅣ模型分析了车速对不同污染物排放的影响,将基于G IS的机动车活动强度、行驶速度和排放因子结合在一起,得到了北京机动车尾气排放网格分布清单。结果表明:CO排放量为71.58×104t,HC排放量为7.95×104t,NOx排放量为8.77×104t,PM排放量为0.38×104t。北京城区高峰小时CO排放量为143.9 t/h,HC排放量为18.6 t/h,NOx排放量为12.5/h,PM10排放量为1.14 t/h。  相似文献   

4.
广州市机动车排放因子隧道测试研究   总被引:13,自引:2,他引:11  
选取广州城市隧道进行连续48h的监测,获得了隧道内NOx,CO,SO2,PM10和HC等污染物的浓度、交通和气象等实测数据,计算出隧道内机动车NOx,CO,SO2,PM-10和HC的单车平均排放因子分别为1.38,15.40,0.14,0.64和1.86g/(km*辆),并得到了8类机动车各种排放污染物的综合排放因子.   相似文献   

5.
北京市机动车污染物排放特征   总被引:73,自引:10,他引:63  
定量分析计算机动车污染物排放特征 ,对城市汽车污染控制决策具有重要意义 .在利用实测数据确定基本参数的基础上 ,用 MOBILE5模型计算了北京市机动车污染物排放因子 ,获得了城区和全市机动车污染物排放总量和排放分担率 ,并分析了不同车型车种在城市区域汽车污染中的贡献率 .结果表明 ,北京市城区 CO,HC和 NOx 的排放总量中 ,汽车源排放分担率分别为 :78% ,83%和 46% .  相似文献   

6.
不同行驶工况下轻型柴油车瞬时排放的CMEM模拟对比研究   总被引:1,自引:0,他引:1  
近年来,我国机动车保有量迅猛增加,标准的行驶工况已难以准确反映机动车在实际道路上的行驶状况。采用CMEM模型研究不同标准工况下车辆排放的差异,旨在为城市交通环境管理与规划提供技术支持。以轻型柴油车为研究对象,给出了模型关于柴油机的结构和主要输入参数,并将模拟得到的车辆在实际道路上的瞬时排放结果与实测数据进行了验证。检验结果表明,THC、CO、NOx排放量的相对误差分别为14.2%、3.7%、32.7%,其相关系数分别达到0.73、0.72、0.87,表明CMEM模型能够较好地反映车辆在实际道路上排放的瞬时变化。对车辆在日本10-15工况、欧洲ECE工况、美国FTP城区工况及中国上海城市主干道路况上的排放和燃油经济性进行了计算。CMEM模拟结果发现,污染物排放水平随着车速的提高而下降,特别是超低速段(0~10 km/h)向低速段(10~20 km/h)过渡时,污染物排放水平的变化显著。车辆的加速过程在污染物排放过程中起主导性作用,其对污染物排放的贡献率在30%以上,个别甚至超过了70%。中国上海城市主干道工况的怠速过程对THC和CO的贡献率分别接近40%和30%,其CO排放因子分别是欧、美、日的1.3、1.5、1.4倍;THC排放因子分别是欧、美、日的1.5、2.1、1.9倍;NOx排放因子分别是欧、美、日的1.2、1.3、1.3倍。模拟车辆在中国上海城市主干道上的燃油经济性最差,仅为9.56 km/L。国外行驶工况不能真实地反映我国机动车在实际道路上的行驶状况。  相似文献   

7.
中国机动车污染物排放因子及其修正方法研究   总被引:2,自引:0,他引:2  
中国机动车污染物排放已成为影响空气质量的重要源。机动车污染的研究中,排放因子的确定是关键。根据机动车使用状况,车用燃料硫含量和行驶状况,运用MOBILE6.2的方法和原理确定了中国各类型机动车HC、CO、NOx的综合排放因子。小型汽油客车国0阶段CO、HC、NOx的综合排放因子分别为34.29g/km、3.45g/km和0.856g/km;国Ⅰ阶段CO、HC、NOx的综合排放因子分别为2.80g/km、0.25g/km和0.40g/km;国Ⅱ阶段CO、HC、NOx的综合排放因子分别为1.39g/km、0.16g/km和0.09g/km。  相似文献   

8.
城市机动车排放因子隧道试验研究   总被引:23,自引:7,他引:16  
选取典型城市隧道进行机动车排放因子测试,应用隧道试验原理,通过连续48h的现场采样监测,获得了隧道内机动车排放污染物NOx.CO、SO2、PM10、VOC和HC浓度、交通参数(车型、车速、交通流量)和气象参数(如风速、风量、温度、湿度)等实测数据.通过质量平衡计算出隧道内机动车NOx.CO、SO2、PM10和HC的平均排放因子分别为1.379、15.404、0.142、0.637、1.857g·(km·辆)-1.并在此基础上应用多元回归方法计算出8大类机动车各种排放污染物的单车排放因子.结果反映目前中国城市机动车污染物排放水平及各污染物排放特征.  相似文献   

9.
采用遥感尾气测试系统实测了柴油车在实际道路工况下的CO、HC和NO排放特征,修正了排放因子的计算方法,并与车载排放测试系统(PEMS)实测结果进行了验证,获得了实测车辆的CO、HC和NO排放因子.测试结果显示,在各种遥感监测的工况下柴油车尾气中均含有较高浓度的氧气,未考虑氧气影响的燃烧方程反演获得的各污染物体积浓度计算值与PEMS实测值的偏差较大,且氧气浓度越大,偏差越大.经过氧气修正的燃烧方程反演计算的尾气浓度与PEMS实测值吻合度大幅提升,适用于实际工况下遥感检测车辆尾气的反演计算.修正算法得到CO、HC和NO的排放因子离散性较小,精确度较高,可以为量化柴油车尾气排放贡献提供科学依据.  相似文献   

10.
重型柴油车实测排放因子和MOBILE6预测值的对比分析   总被引:4,自引:0,他引:4  
利用车载尾气检测技术(PEMS)可以获得实时的机动车排放数据.笔者利用PEMS实测了重型柴油车的排放数据,在此基础上分析了CO、HC、NOx和PM的排放因子与速度、加速度的关系,同时使用MOBILE6模型,经过模型参数的校正,从而得到相应的预测排放因子,最终对排放因子的实测值、MOBILE6模型预测值以及欧Ⅱ的排放标准估测值进行了对比分析.  相似文献   

11.
乌鲁木齐市机动车排放清单研究   总被引:6,自引:3,他引:3  
近年来随着乌鲁木齐市机动车数量的快速增加,致使机动车排放污染突出. 通过调查乌鲁木齐市2007年机动车的保有情况及技术水平分布,研究了各类型机动车的排放因子以及年均行驶里程,并测算了该市2007年机动车污染物排放总量、分区排放量及各类型机动车的分担率. 结果表明:2007年在乌鲁木齐市注册的各类型机动车排放的CO总量为11.09×104 t,HC总量为1.53×104 t,NOx总量为2.73×104 t,PM总量为0.38×104 t;其中CO和HC排放主要集中在城区,NOx和PM排放主要集中在外埠;在城区的机动车排放中,CO和HC排放以轻型载客汽车为主,NOx排放以中重型公交车为主,PM排放以中、重型载货汽车为主.   相似文献   

12.
王鸿宇  黄成  胡磬遥  李莉  陈勇航  徐健 《环境科学》2017,38(6):2294-2300
选取25辆国2~国5标准在用轻型汽油车分别采用简易瞬态工况法(VMAS)与定容全流稀释采样法(CVS)开展了排放实测,分析了两种方法实测的排放因子相关性.结果表明,轻型汽油车排放水平总体随排放标准提升而呈下降趋势,国2和国3标准车辆中存在一定的高排放现象,国4及以上标准车型排放相对较低.VMAS和CVS方法的排放相关性随标准提升而显著下降,对国4及以上标准车辆的CO和HC+NO_x排放的相对偏差分别达到197%和177%.对较高排放车辆,两种方法检测结果的相关系数达到0.75~0.85;对较低排放车辆,相关系数仅为0.46左右,若将在用车排放标准进一步收严,采用VMAS检测的误判率将显著上升.随着我国机动车排放水平的不断下降,总体来看,VMAS检测对高排放标准车辆的适用性相对较差,有必要在用车排放检测方法方面开展更为深入的研究.  相似文献   

13.
通过实际测试得到轻型汽油车蒸发排放热浸和昼间排放因子,结合北京市轻型汽油车保有量和车辆使用情况,基于MOVES模型评估北京市轻型汽油车蒸发排放总量.结果表明,国五和国六标准车辆的平均蒸发排放因子分为1.03,0.37g/test;轻型汽油车蒸发排放随行驶里程增加未出现明显劣化趋势;北京市轻型汽油车蒸发排放总量为8299...  相似文献   

14.
不同行驶工况下轻型柴油车瞬时排放的CMEM模拟研究   总被引:4,自引:1,他引:3  
戴璞  陈长虹  黄成  李莉  贾记红  董艳强 《环境科学》2009,30(5):1520-1527
以轻型柴油车为研究对象,给出了轻型柴油车瞬时排放计算模型的结构和主要输入参数,并将车辆在实际道路上的瞬时排放计算结果与实测数据作了对比验证.结果表明,THC、CO以及NOx排放的相对误差分别为14.2%、 3.7%和32.7%,相关系数分别达到0.73、 0.72和0.87,表明CMEM模型能够较好地反映车辆在实际道路上排放的瞬时变化.对车辆在日本10-15工况、欧洲ECE工况、美国FTP城区工况及上海城市主干道路况上的排放和燃油经济性进行了模拟计算.CMEM模拟结果发现,污染物排放水平随着车速的提高而下降;特别是超低速段0~10 km·h-1向10~20 km·h-1过渡时,污染物排放水平变化显著.车辆的加速过程在污染物排放过程中起主导作用,其对污染物排放的贡献在30%以上,个别甚至超过70%.上海城市主干道工况的怠速过程对THC和CO的贡献率分别接近40%和30%,CO、THC、NOx排放因子分别是欧美日的1.3、 1.5、 1.4倍,1.5、 2.1、 1.9倍以及1.2、 1.3、 1.3倍.模拟车辆在上海城市主干道上的燃油经济性最差,仅9.56 km·L-1.国外行驶工况不能真实地反映我国机动车在实际道路上的行驶状况.  相似文献   

15.
In this study, the influences of accumulated mileage(deterioration) and technological changes(emission standards) on emission factors(EFs) of regulated pollutants(CO, HC, and NO_x) from gasoline passenger vehicles were investigated based on Inspection and Maintenance(I/M) data using the chassis dynamometer method. The accumulated mileage of passenger vehicles was significantly linearly correlated with vehicle age. For most cases,the average EFs of CO, HC and NO_x were significantly linearly correlated with accumulated mileage, indicating that emission deterioration had a significant impact on pollutant EFs.Implemented emission standards markedly influenced the EFs of regulated pollutants, and EFs markedly decreased with progressing emission standards. The present study also compared EFs of regulated pollutants between this study and the International vehicle emission(IVE) model, and marked differences in EFs were seen with variations in emission standards, vehicle types and accumulated mileage; NO_x EFs in this study were higher than in the IVE model. The results provide new insight into estimating regulated pollutant emissions using the IVE model.  相似文献   

16.
汽车简易工况法与新车排放认证工况法的相关性研究   总被引:5,自引:2,他引:3  
选取50辆在用轻型汽油车,对国家标准规定的瞬态工况法(IM195)、简易瞬态工况法(IG195)、稳态工况法(ASM)与新车排放认证工况法(NEDC)间污染物排放系数的相关性进行研究.结果表明:瞬态工况法与新车排放认证工况法的污染物排放系数相关性最好,CO,碳氢化合物(HC)和NO的排放系数的R〖WTBZ〗2分别为0.701 0,0.727 1和0.6609;简易瞬态工况法次之,其CO,HC和NO 排放系数与新车排放认证工况法的R2分别为0.513 8,0.484 6和0.624 5;而稳态工况法与新车排放认证工况法的相关性最差,5025工况法下的CO,HC和NO 排放系数与新车排放认证工况法的R〖WTBZ〗2分别为0.410 9,0.448 1和0.5449;2540工况法下R〖WTBZ〗2分别仅为0.364 4,0.339 5和0.457 8.引起不同方法间污染物排放系数相关性差异的主要原因包括车辆热状态、车辆试验循环工况、分析仪器的测量原理和底盘测功机的控制精度等.   相似文献   

17.
为了研究未来北京市机动车排放控制措施的减排效果,本文基于情景分析法,以2010年为基准年,通过设置3类控制措施情景,估算2011~2020年不同情景下北京市机动车常规污染物排放量,并在基准情景基础上,估算污染物减排量,分析控制措施对不同类型机动车的减排贡献.结果表明,尽管未来北京市机动车保有量会有较大增长,实施机动车排放控制措施仍可取得显著的减排效果.单一措施中,淘汰高排放车减排量最大.其中,淘汰轻型客车可有效减少CO的排放,减排贡献率为89.4%;淘汰重型客车可对NOx、HC和PM10达到有效削减,其贡献率分别为65.5%、55.8%、93.4%.实施新的排放标准对重型柴油车的排放也有明显控制效果,且4种污染物都能得到有效削减.综合实施各种措施的效果最为显著,2020年对CO、NOx、HC、PM10的削减效果分别达到46.4%、42.1%、8.6%和50.6%.  相似文献   

18.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号