首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By enrichment culturing of soil contaminated with metribuzin, a highly efficient metribuzin degrading bacterium, Bacillus sp. N1, was isolated. This strain grows using metribuzin at 5.0% (v/v) as the sole nitrogen source in a liquid medium. Optimal metribuzin degradation occurred at a temperature of 30ºC and at pH 7.0. With an initial concentration of 20 mg L?1, the degradation rate was 73.5% in 120 h. If the initial concentrations were higher than 50 mg L?1, the biodegradation rates decreased as the metribuzin concentrations increased. When the concentration was 100 mg L?1, the degradation rate was only 45%. Degradation followed the pesticide degradation kinetic equation at initial concentrations between 5 mg L?1 and 50 mg L?1. When the metribuzin contaminated soil was mixed with strain N1 (with the concentration of metribuzin being 20 mg L?1 and the inoculation rate of 1011 g?1 dry soil), the degradation rate of the metribuzin was 66.4% in 30 days, while the degradation rate of metribuzin was only 19.4% in the control soil without the strain N1. These results indicate that the strain N1 can significantly increase the degradation rate of metribuzin in contaminated soil.  相似文献   

2.
This study examined residual concentrations and associated ecological risks of the organochlorine pesticides (OCPs) hexa- chlorocyclohexane (HCH) and dichloro-diphenyl-trichloroethane (DDT) in water, sediment, and fish of the Songhua River in Zhaoyuan County, China. In June 2012, 10 water, 10 sediment, and 20 fish samples were collected. Residual concentrations of ΣHCH and ΣDDT ranged from 10.0–35.59 ng L?1 (mean 28.03 ± 11.66 ng L?1) and 5.12–39.66 ng L?1 (mean 32.36 ± 11.58 ng L?1) for water. Residual concentrations of ΣHCH and ΣDDT ranged from 0.52–3.00 ng g?1 (mean 2.04 ± 0.73 ng g?1) and 0.34–3.41 ng g?1 (mean 2.38 ± 0.92 ng g?1) for sediment. The ratios of α-HCH/γ-HCH were close to 1 at the majority of sampling points, indicating considerable new pollution from the use of lindane. The ratios of p,p′-DDE + p,p′-DDD/ΣDDT were less than 0.5, indicating recent inputs from DDT impurities in dicofol. All HCH and DDT isomers except for p,p′-DDD were detected in fish tissue samples, but the associated ecological risks were estimated to be below levels of concern. The study revealed a historical usage of OCPs in the Zhaoyuan section of the Songhua River and new OCP from the use of lindane and dicofol.  相似文献   

3.
The temporal and spatial distribution characteristics of environmental parameters and the phytoplankton community were investigated in October 2010 and January 2011 in the Qinhuai River, Nanjing, China. Results showed that the water quality in the study area was generally poor, and the main parameters exceeding standards (level V) were nitrogen and phosphorus. The observed average concentrations of the total nitrogen (TN) were 4.90 mg?L?1 in autumn and 9.29 mg?L?1 in winter, and those of the total phosphorus (TP) were 0.24 mg?L?1 in autumn and 0.88 mg?L?1 in winter, respectively. Thirty-seven species, 30 genera, and four phyla of phytoplankton were detected in the river. Cyanophyta and Bacillariophyta were the dominant phyla in autumn, with average abundance and biomass of 221.5?×?104?cells?L?1 and 4.41 mg?L?1, respectively. The dominant population in winter was Bacillariophyta, and the average abundance and biomass were 153.4?×?104?cells?L?1 and 6.58 mg?L?1, respectively. The results of canonical correspondence analysis (CCA) between environmental parameters and phytoplankton communities showed that Chlorophyta could tolerate the higher concentrations of the permanganate index, nitrogen, and phosphorus in eutrophic water; Bacillariophyta could adapt well to changing water environments; and the TN/TP ratio had obvious impacts on the distributions of Cyanophyta, Euglenophyta, and some species of Chlorophyta. CCA analyses for autumn and winter data revealed that the main environmental parameters influencing phytoplankton distribution were water temperature, conductivity, and total nitrogen, and the secondary factors were dissolved oxygen, NH4 +–N, NO3–N, TN, CODMn, TN/TP ratio, and oxidation-reduction potential.  相似文献   

4.
The aims of this research were to evaluate the efficacy of copper oxychloride (CuCl2.3Cu(OH)2), copper hydroxide (Cu(OH)2) and diquat (1.1′-ethylene-2.2′-bipyridyldiylium dibromide), isolated and in association with 0.1% of both copper sources, in the control of the unicellular algae Ankistrodesmus gracilis and the filamentous algae Pithophora kewesis, and to determine the acute toxicity of the tested chemicals in Hyphressobrycon eques, Pomacea canaliculata, Lemna minor and Azolla caroliniana. The efficacy was estimated by the methods of chlorophyll a and pheophytin a readings, changed into growth inhibition percentage. Both algae were exposed to the following concentrations: 0.2; 0.4; 0.8; 1.2 mg L?1 of diquat and its association with the copper sources; and 0.1; 0.3; 0.5; 0.7; 1.0 and 1.5 mg L?1 in the isolated applications of copper hydroxide and copper oxychloride. An untreated control was kept. The acute toxicity was estimatedby 50% lethal concentration (LC50). The copper sources were effective for A. gracilis control, at rates as high as 0.1 mg L?1 (>95% efficacy). Isolated diquat and its association with copper hydroxide were both effective at rates as high as 0.4 mg L?1, with 95 and 88% control efficacy, respectively. The copper oxychloride was effective at 0.2 mg L?1, with 93% efficacy. None of the tested chemicals and associations was effective on P. kewesis control. The most sensitive non target organism to the tested chemicals was L. minor; the less sensitive was H. eques.  相似文献   

5.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

6.
The objective of this study was to determine the acute toxicity of some pesticides used in irrigated rice farming to Lithobates catesbeianus tadpoles. The LC50-96h for commercial formulations containing bentazon, penoxsulam, vegetable oil, permethrin and carbofuran, separately and their mixtures, were determined at the proportions commonly used in the field. The limits of risk concentrations of these products for the studied species were also established. The LC50-96h for tadpoles was 4,530 mg L?1 for bentazon; 7.52 mg L?1 for penoxsulam + 145.66 mg L?1 of vegetable oil; 81.57 mg L?1 for vegetable oil; 0.10 mg L?1 for permethrin; 29.90 mg L?1 for carbofuran (active ingredients), and 38.79 times the dose used in the field for the mixture of these products. The environmental risk was determined only for permethrin, and care should be taken when using the vegetable oil.  相似文献   

7.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

8.
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L?1 of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L?1 for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg?1, which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.  相似文献   

9.
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011–2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m2 long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha?1) and Merlin Gold (1 L ha?1). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L?1. Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L?1. Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L?1), while diketonitrile was detected in concentrations above 0.1 µg L?1 on 1 DAT in 2011 only.  相似文献   

10.
By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L?1, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L?1, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L?1, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L?1 and 50 mg L?1. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.  相似文献   

11.
This study aimed to evaluate the aquatic toxicity of three typical tetracycline antibiotics, including tetracycline, oxytetracycline, and chlortetracycline, on the cyanobacterium Microcystis aeruginosa. The cell density, chlorophyll a content, protein content, and enzymatic antioxidant activities were determined. The results showed that the cell growth was significantly inhibited by the three compounds at a low concentration. The chlorophyll a and protein content decreased significantly after exposure to 0.05 mg L?1 of each compound for 9 d. When exposed to 0.2–1 mg L?1 of tetracycline, the superoxide dismutase (SOD) activity increased, but peroxidase (POD) and catalase (CAT) activities decreased. In contrast, when exposed to oxytetracycline and chlortetracycline at different concentrations ranging from 0.2 to 1 mg L?1 and from 0.01 to 0.05 mg L?1, the SOD activity decreased, but the POD and CAT activities increased. These findings indicate that tetracycline antibiotics influence cell growth and protein synthesis, and they also induce oxidative stress in M. aeruginosa at environmentally similar concentrations. Thus, this study may provide further insights into the toxic effects of tetracycline antibiotics and the controlled use of antibiotics.  相似文献   

12.
With the use of cost-effective natural materials, biosorption is considered as an ecological tool that is applied worldwide for the remediation of pollution. In this study, we proposed Lemna gibba biomass (LGB), a lignocellulosic sorbent material, for the removal of two textile dyes, Direct Red 89 (DR-89) and Reactive Green 12 (RG-12). These azo dyes commonly used in dying operations of natural and synthetic fibres are the most important pollutants produced in textile industry effluents. For this purpose, batch biosorption experiments were carried out to assess the efficacy of LGB on dye treatment by evaluating the effect of contact time, biomass dosage, and initial dye concentration. The results indicated that the bioremoval efficiency of 5 mg?L?1 DR-89 and RG-12 reached approximately 100 % after 20 min of the exposure time; however, the maximum biosorption of 50 mg?L?1 DR-89 and 15 mg?L?1 RG-12 was determined to be about 60 and 47 %, respectively. Fourier transform infrared spectroscopy used to explain the sorption mechanism showed that the functional groups of carboxylic acid and hydroxyl played a major role in the retention of these pollutants on the biomass surface. The modelling results using Freundlich, Langmuir, Temkin, Elovich, and Dubini Radushkevich (D-R) isotherms demonstrated that the DR-89 biosorption process was better described with the Langmuir theory (R 2?=?0.992) while the RG-12 biosorption process fitted well by the D-R isotherm equation (R 2?=?0.988). The maximum biosorption capacity was found to be 20.0 and 115.5 mg?g?1 for DR-89 and RG-12, respectively, showing a higher ability of duckweed biomass for the bioremoval of the green dye. The thermodynamic study showed that the dye biosorption was a spontaneous and endothermic process. The efficacy of using duckweed biomass for the bioremoval of the two dyes was limited to concentrations ≤50 mg?L?1, indicating that L. gibba biomass may be suitable in the refining step of textile effluent treatment.  相似文献   

13.
In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm?1) of tolerance index (TI) were recorded at 25 and 50 mg L?1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L?1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box–Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box–Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L?1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L?1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L?1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t50) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.  相似文献   

14.
Tebuconazole is a chiral triazole fungicide used as raceme in a variety of agricultural applications. Earlier studies showed that tebuconazole is toxic to many non-target aquatic organisms but relative data for tebuconazole enantiomers are lacking. Thus, goal of this study was to evaluate and compare the toxicity of rac- and S-tebuconazole with Daphnia magna at both acute and chronic levels according to Organization for Economic Cooperation and Development (OECD) guidelines 202 and 211 respectively, to provide some guidelines for optimizing chiral pesticides application and management. The exposure concentrations were 0.1, 0.5, 1, 2, 4, 8, 10 mg L?1 for both rac- and S-tebuconazole and their 48-h EC50 values to D. magna were 3.53 (3.32–3.78) and 2.74 (2.33–3.10) mg L?1 respectively, indicating that these both are medium toxic to D. magna with no significant toxicity difference at acute level. In chronic test, <24-h old D. magna were exposed to 0.01, 0.05, 0.10, 0.20, and 0.40 mg L?1 of rac- and S-tebuconazole with one blank and one solvent control for 21 days according to OECD guideline 211. Four developmental (molting rate, days to the 1st and 3rd brood, and body length) and five reproductive (size of the 1st and 3rd brood, number of broods, and number of neonates) parameters for each D. magna were determined. Results showed that both rac- and S-tebuconazole significantly reduced the reproduction and impacted the development of D. magna at concentrations of 0.05 mg L?1 or higher. Furthermore, S-tebuconazole was more toxic than raceme, and the difference between effects on the same parameters induced by rac- and S-tebuconazole was statistically significant. These results demonstrated that the chronic toxicity of S-tebuconazole might be underestimated in general use, and further studies should focus more on the biological behaviors of enantiomers and not just the raceme of tebuconazole and other chiral pesticides in the environment.  相似文献   

15.
Antibiotics are extensively given to livestock to promote growth and reduce diseases. Therefore, animal manure often contains antibiotics. Once manure is applied to agricultural land to improve soil productivity, crops would be exposed to antibiotics which may persist in soils from a few to several hundred days. The objective of this study was to evaluate the uptake of gentamicin and streptomycin by carrot (Daucus carota), lettuce (Lactuca sativa) and radish (Rhaphanus sativus) from manure-amended soil. The treatments were 0, 0.5 and 1 mg of antibiotic kg?1 of soil. Two pot experiments were carried out in the greenhouse. The first was conducted on the three crops and the second exclusively on radish. In radish, the increase in the concentrations of gentamicin was significant between the 0 and both of 0.5 and 1.0 mg kg?1 treatments, but not significant between the 0.5 and 1.0 mg kg?1. The average values were 35.5, 60.0 and 57.4 μg kg?1 for the 0, 0.5 and 1 mg kg?1 rates, respectively. However, the increase in streptomycin concentration in radish was not significant between the three treatments, and the average values were, 12.1, 15.2 and 17.4 μg kg?1 for the 0, 0.5 and 1 mg kg?1 rates, respectively. In carrot roots and lettuce leaves no significant increase in the concentrations of gentamicin or streptomycin was observed between the treatments. The three crops absorbed relatively higher amounts of gentamicin (small molecule) than streptomycin (large molecule). Generally the levels of antibiotics in plant tissue increased with increasing the antibiotic concentration in the manure (1 mg kg?1 > 0.5 mg kg?1).  相似文献   

16.
The present study was designed to reveal whether long-term consumption of bitter apricot seeds causes changes in lipid profile and other risk factors for cardiovascular diseases. The study group consisted of 12 healthy adult volunteers (5 females and 7 males). The average age of women was 41.60 ± 11.28 years and the average age of men was 36.71 ± 13.70 years. Volunteers consumed 60 mg kg?1 of body weight of bitter apricot seeds divided into 8–12 doses daily for 12 weeks. Volunteers were recruited from the general population of Slovak Republic. After 12 weeks, mean body weight of the participants increased from 77.34 to 78.22 kg (P > 0.05). The average total cholesterol levels decreased from 4.86 mmol L?1 at the beginning of the study to 4.44 mmol L?1 at the end of the study (P < 0.05). We did not observe any significant increase in high-density cholesterol (from 1.55 to 1.60 mmol L?1). The average low-density cholesterol levels decreased from 2.93 mmol L?1 at the beginning of the study to 2.31 mmol L?1 at the end of the study (P < 0.001). Concentration of triglycerides increased significantly over the 12-week intervention period from 0.84 to 1.17 mmol L?1. After the intervention, the high-sensitivity C-reactive protein level decreased from 1.92 to 1.23 mg L?1, but results were non-significant (P > 0.05). Creatine kinase serum levels increased from 2.31 to 2.77 mg L?1 (P > 0.05) over the 12-week intervention period. The results suggest that regular intake of bitter apricot seeds may be considered potentially useful for prevention of cardiovascular diseases.  相似文献   

17.
Field isolates of Didymella applanata, the causal agent of spur blight of raspberry, were evaluated in vitro for their sensitivity to mancozeb, chlorothalonil, captan, fluopyram, boscalid and difenoconazole. A total of 10 isolates, collected during 2013 at five localities in the major raspberry growing region in Serbia, and characterized as copper hydroxide, dithianon, and tebuconazole (sensitive), pyraclostrobin (sensitive or highly resistant) and fluazinam (sensitive or moderately resistant), were used in this study. The EC50 values for the isolates ranged from 1.33 to 2.88 mg L?1 for mancozeb, from 3.18 to 6.65 mg L?1 for chlorothalonil, from 15.75 to 24.69 mg L?1 for captan and from 1.80 to 8.20 mg L?1 for fluopyram. The narrowest range of EC50 values was recorded for difenoconazole (0.23–0.49 mg L?1), whereas the widest range was obtained for boscalid (4.49–49.25 mg L?1). The calculated resistance factors showed that all D. applanata isolates were sensitive to mancozeb, chlorothalonil, captan, and difenoconazole. Four isolates were moderately resistant to boscalid, while three of them were also moderately resistant to fluopyram. This finding of moderately resistant isolates to these SDHI fungicides indicates a possible cross-resistance which should be clarified in further investigations.  相似文献   

18.
Overgrowth of water chestnut (Trapa spp.) is a regional problem throughout Asia and North America because of waterway blockage and water fouling upon decomposition. In the present study, we investigated the potential of water chestnut to control cyanobacterial blooms, via a high content of phenolic compounds. In addition, we assessed the impact of biomass harvesting and crude extract application on nutrient balance. We showed that the floating parts of water chestnut contained high concentrations of total phenolics (89.2 mg g?1 dry weight) and exhibited strong antioxidant activity (1.31 mmol g?1 dry weight). Methanol-extracted phenolics inhibited growth of Microcystis aeruginosa; the half maximal effective concentration (EC50) of the extracted phenolics was 5.8 mg L?1, which was obtained from only 103 mg L?1 of dry biomass (the floating and submerged parts). However, the crude extracts also added important quantities of nitrogen, phosphorus, and potassium (1.49, 1.05, and 16.3 mg g?1, respectively; extracted dry biomass weight basis); therefore, in practice, nutrient removal before and/or after the extraction is essential. On the other hand, biomass harvesting enables recovery of nitrogen, phosphorus, and potassium from the water environment (23.1, 2.9, and 18.7 mg g?1, respectively; dry biomass weight basis). Our findings indicate that water chestnut contains high concentrations of phenolics and exhibits strong antioxidant activity. Utilization of these resources, including nutrients, will contribute to reclamation of the water environment, and also to disposal of wet biomass.  相似文献   

19.
A simple and rapid online microchannel preconcentrator coupled with an amperometric detection for the analysis of carbofuran using polyethylene glycol coated onto magnetic particle (PEG-magnetic particles) sorbents was developed. This simple-to-prepare microchannel preconcentrator used an external magnet to retain the PEG-magnetic particle sorbents inside the microchannel. Under optimum conditions, the system provided two linear ranges, from 0.01 to 10.0 mg L?1 and from 10.0 to 130.0 mg L?1 with a limit of detection of 8.7 ± 0.1 μg L?1. The microchannel preconcentrator provided very good stability; it can be used for up to 326 consecutive injections of 5.0 mg L?1 carbofuran with a relative standard deviation of less than 3%. The developed system provided a good microchannel-to-microchannel and a good electrode-to-electrode reproducibility (n = 6, %RSD < 1). It also provided an excellent selectivity when it was tested with two other carbamate pesticides, carbaryl and methomyl, with a 43 and 256 times higher detection sensitivity for carbofuran, respectively. The developed system was successfully applied to detect carbofuran in surface water samples obtained near vegetable plantation areas. The concentrations of carbofuran in these samples were found to be in the range of non-detectable to 0.047 ± 0.001 mg L?1. The developed system is easy to operate and easy to couple with other analytical instruments and it could be easily adapted for the analysis of other polar organic contaminants.  相似文献   

20.
Enrichment culturing of sludge taken from an industrial wastewater treatment pond led to the identification of a bacterium (Klebsiella jilinsis H. Zhang) that degrades chlorimuron-ethyl with high efficiency. Klebsiella jilinsis strain 2N3 grows with chlorimuron-ethyl as the sole nitrogen source at the optimal temperature range of 30–35°C and pH values between 6.0–7.0. In liquid medium, the degradation activity was further induced by chlorimuron-ethyl. Degradation rates followed the pesticide degradation kinetic equation at concentrations between 20 and 200 mg L?1. Using initial concentrations of 20 and 100 mg L?1, the degradation rates of chlorimuron-ethyl were 83.5 % and 92.5 % in 12 hours, respectively. At an initial concentration higher than 200 mg L?1, the degradation rate decreased slightly as the concentration increased. The 2N3 strain also degraded the sulfonylurea herbicides ethametsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron, and tribenuron-methyl. This study provides scientific evidence and support for the application of K. jilinsis in bioremediation to reduce environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号