首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Increasing salinity is one of the most significant and widespread forms of groundwater pollution in coastal areas. This paper presents the causes and impacts of saline water intrusion in coastal areas. Various causes of salt water intrusion, and approaches for the determination of its extent and various measures to control the salt water intrusion are described. An aquifer performance test (APT) approach is presented to identify the extent of existing salt water intrusion in the study area located in the southwest coastal region of Gujarat State (India). A resistivity based experimental technique is used to identify the quality of the groundwater available at different depths. A methodology is presented to assess the extent of available fresh and saline groundwater and to find out the limit up to which lower saline groundwater can be withdrawn for industrial purposes without affecting the upper fresh water layer which can be made available for domestic purposes.  相似文献   

2.
In this article, the authors explore their recent study, which introduces the concept of extracting saline water and fresh water simultaneously from groundwater aquifers to produce water that is suitable for irrigation. To achieve these results, multiwell modeling concepts are used to exploit both the saline and nonsaline aquifer domains from geologic formations where a freshwater aquifer domain is either underlain or overlain by a saline aquifer domain. The water from these domains are either mixed to an acceptable salinity level after independent withdrawal from separate, saline or nonsaline domains present within the same aquifer, or mixed from the domains to achieve acceptable levels of salinity before withdrawal.  相似文献   

3.
Vulnerability assessment is considered an effective tool in establishing monitoring networks required for controlling potential pollution. The aim of this work is to propose a new integrated methodology to assess actual and forecasted groundwater vulnerability by including land-use change impact on groundwater quality. Land-use changes were simulated by applying a spatial dynamics model in a scenario of agricultural expansion. Groundwater vulnerability methodology DRASTIC-P, was modifyed by adding a land-use parameter in order to assess groundwater vulnerability within a future scenario. This new groundwater vulnerability methodology shows the areas where agricultural activities increase the potential level of groundwater vulnerability to pollution. The Dulce Creek Basin was the study case proposed for the application of this methodology. The study revealed that the area with Very High vulnerability would increase 20% by the year 2020 in the Dulce Creek Basin. This result can be explained by analyzing the land-use map simulated by the Dyna-CLUE model for the year 2020, which shows that the areas with increments in crop and pasture coincide with the area defined by the Very High aquifer vulnerability category in the year 2020. Through scenario analysis, land-use change models can help to identify medium or long term critical locations in the face of environmental change.  相似文献   

4.
The current paper discusses the multi‐strainer technique developed to augment usable water by the combined use of saline and non‐saline aquifers in locations where a freshwater aquifer is underlain or overlain by a saline water aquifer. The multi‐strainer technique evaluates design criteria for the formulation of multi‐strainer schemes to supply water at an acceptable salinity limit by combined use of the saline and non‐saline aquifers. The design ratio of discharges can be maintained by adjusting the strainers’ lengths in the saline and non‐saline aquifers. The multi‐strainer scheme has been applied in the coastal aquifers of Bangladesh and found to be effective at lowering the water salinity concentrations to acceptable levels, thus increasing the availability of water for sustainable use. The multi‐strainer scheme should be designed based on the thickness of the aquifer layers to be screened, the salinity concentrations of the screened layers, and the level of salinity concentration to be maintained.  相似文献   

5.
ABSTRACT: California's courts have recently recognized the existence of underground aquifer storage rights that permit public agencies to (1) store imported waters in aquifers; (2) prevent others from expropriating that water; and (3) recapture the stored water when it is needed. The article describes the two appellate decisions that represent the common-law development of aquifer storage rights. Each decision related to separate aquifers that were subject to separate types of groundwater management programs. One decision involved an aquifer under the southeastern San Francisco Bay area that was managed under statutory authority and is entitled, Niles Sand and Gravel Co. v. Alameda County Water District 37 C.A.3d 924 (1974); cert. denied 419 US 869. The other decision involved an aquifer under Southern California's San Fernando Valley that was managed under judicial authority and is entitled, City of Los Angeles v. City of San Fernando 14 Cal.3d 199 (1975). The two decisions provide separate, but complimentary, public interest rationales for aquifer storage rights: (1) to protect water supplies necessary for the overlying community; and (2) to increase water supply efficiencies by using natural underground reservoirs wherever practicable. The Article reviews the relationship of aquifer storage rights to conventional groundwater rights and indicates aspects of the storage right that may need additional development.  相似文献   

6.
Application of game theory for a groundwater conflict in Mexico   总被引:2,自引:0,他引:2  
Exploitation of scarce water resources, particularly in areas of high demand, inevitably produces conflict among disparate stakeholders, each of whom may have their own set of priorities. In order to arrive at a socially acceptable compromise, the decision-makers should seek an optimal trade-off between conflicting objectives that reflect the priorities of the various stakeholders. In this study, game theory was applied to a multiobjective conflict problem for the Alto Rio Lerma Irrigation District, located in the state of Guanajuato in Mexico, where economic benefits from agricultural production should be balanced with associated negative environmental impacts. The short period of rainfall in this area, combined with high groundwater withdrawals from irrigation wells, has produced severe aquifer overdraft. In addition, current agricultural practices of applying high loads of fertilizers and pesticides have contaminated regions of the aquifer. The net economic benefit to this agricultural region in the short-term lies with increasing crop yields, which requires large pumping extractions for irrigation as well as high chemical loading. In the longer term, this can produce economic loss due to higher pumping costs (i.e., higher lift requirements), or even loss of the aquifer as a viable source of water. Negative environmental impacts include continued diminishment of groundwater quality, and declining groundwater levels in the basin, which can damage surface water systems that support environmental habitats. The two primary stakeholders or players, the farmers in the irrigation district and the community at large, must find an optimal balance between positive economic benefits and negative environmental impacts. In this paper, game theory was applied to find the optimal solution between the two conflicting objectives among 12 alternative groundwater extraction scenarios. Different attributes were used to quantify the benefits and costs of the two objectives, and, following generation of the Pareto frontier or trade-off curve, four conflict resolution methods were then applied.  相似文献   

7.
ABSTRACT: A large number of agricultural drainage wells (ADWs) are located in north-central Iowa. These wells permit sediments, pesticides, nitrate, and bacteria in surface and subsurface drainage water to enter regional aquifers that are currently being used for drinking-water supplies, mostly by rural families and communities. This paper reports some possible alternatives to control the entry of surface and subsurface drainage waters into groundwater systems, and describes a methodology to make comprehensive economic feasibility studies of alternative drainage outlets. The estimated cost of providing main subsurface drains varied from $220 to $960 per hectare. If the use of ADWs was completely eliminated without providing alternative drainage, it is estimated that the average annual loss to the farmers of the area would be at least $270 per hectare in reduced crop yields. Of course, losses would be weather dependent and highly variable. Management practices to reduce the pollutant load in water draining to ADWs are also discussed.  相似文献   

8.
ABSTRACT: Although evidence of modern recharge in the North African and Arabian sedimentary basin aquifers exists, it is difficult to determine the volume of recharge. Also, from the evidence of regional groundwater gradients, the flow within the aquifers seems to be appreciably greater than one would intuitively expect. A hypotehtical model embodying the characteristics of the aquifers has been used to investigate the likely significance of various possible flow mechanisms. It is shown that while dewatering in the unconfined area can possibly contribute to flows for a considerable period of time, the maintenance of water levels in the unconfined zone must be the result of modern recharge. It is also shown that recharge depths of less than 10 mm per annum are sufficient given suitable aquifer parameters. Results for various combinations of aquifer parameters and configurations are given, including layered aquifers and the effects of restricted oufflows. Comparisons are made using a “bench mark” example. The work indicates that there is little point in carrying out conventional hydrological balance studies in hyper-arid areas and that, instead, more emphasis should be placed upon good groundwater hydrographic data and modeling.  相似文献   

9.
ABSTRACT: During the past two decades, the Kingdom of Saudi Arabia has witnessed rapid development in its agricultural and urban areas, which has resulted in greater reliance being placed on its ground water aquifers. The intensive development, particularly along the coastline and in the absence of adequate replenishment sources, has led to major deterioration in the quality and quantity of ground water resources. A numerical model of the Dammam aquifer in the Eastern Province is developed and used to predict the extent of the saline intrusion in the aquifer. The types of stresses effecting the solute transport were identified and remedial measures were suggested. (KEY TERMS: numerical modeling; Saudi Arabia; aquifer; modeling/statistics.)  相似文献   

10.
ABSTRACT: Salinity increases in water in some parts of the Nava-jo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the lsmay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field are not the source of salinity increases in the Navajo aquifer.  相似文献   

11.
ABSTRACT: The Ogallala aquifer in the Oklahoma Panhandle is in need of better management because of increased groundwater demand which has caused declines in static water levels at an alarming rate. A groundwater management computer model was developed for the Ogallala aquifer in the Texas Panhandle and treats the aquifer as a homogeneous system. In this study, the computer model has been modified in order to evaluate the effects of vertical layering on semi-static water level changes which occur during the dewatering of a single unconfined aquifer. The modified model was applied to a study area near Guymon, Oklahoma, using both the homogeneous and the multilayered cases. The aquifer is characterized by a saturated thickness of 400 feet. The accumulated drawdown values of the homogeneous and the multilayered cases demonstrate that an average difference of approximately 22% of the original saturated thickness occurs between the two cases before the base of the aquifer is encountered. Approximately 25% more time is required to dewater the layered aquifer. Thus, vertical variations of lithology in an aquifer such as the Ogallala should be considered when prediction is made relative to groundwater management.  相似文献   

12.
To estimate the freshwater loss in coastal aquifers due to salinisation, a numerical model based on the sharp interface assumption has been introduced. The developed methodology will be useful in areas where limited hydrological data are available. This model will elaborate on the changes in fresh groundwater loss with respect to climate change, land use pattern and hydrologic soil condition. The aridity index has been introduced to represent the variations in precipitation and temperature. The interesting finding is that the deforestation leads to increase groundwater recharge in arid areas, because deforestation leads to reduce evapotranspiration even though it favors runoff. The combined climate and land use scenarios show that when the aridity index is less than 60, the agricultural lands give higher groundwater recharge than other land use patterns for all hydrologic soil conditions. The calculated recharge was then used to estimate the freshwater-saltwater interface and percentage of freshwater loss due to salinity intrusion. We found that in arid areas, the fresh groundwater loss increases as the percentage of forest cover increases. The combined effects of deforestation and aridity index on fresh groundwater loss show that deforestation causes an increase in the recharge and existing fresh groundwater resource in areas having low precipitation and high temperature (arid climates).  相似文献   

13.
Applications of systems methodology to water problems of the Tucson basin are summarized. Natural recharge is estimated by means of a discrete convolution relation in which the unit impulse response of an aquifer is derived from basic hydro-dynamic laws. A temporal model of sequences of wet and dry periods during the summer thunderstorm season is based on a multiple linear regression equation that relates total rainfall amount during the wet period to the duration of the wet period and volume of peak rainfall. A spatial model predicts point rainfall frequency of maximal and minimal amounts of thunderstorm rainfall. A static management model allocates Tucson groundwater, Avra Valley water, Colorado River water, and reclaimed waste water to municipal, industrial, and agricultural users within a pricing framework. For a range of pricing policies the model clearly demonstrates the opportunity costs to the community by use of higher-priced water supplies such as Colorado River water in lieu of Tucson groundwater. The role of worth of data studies in relation to data analysis, model building and management studies is also introduced.  相似文献   

14.
ABSTRACT: Large-scale groundwater abstraction from the Cretaceous Chalk/Lower Tertiary Basal Sands aquifer system of the London Basin in the last 150 years has developed storage of more than 1000 Mm3. Limited operational recharge was undertaken in the 1950's encouraging further detailed study of the wider possibilities. Following a comprehensive hydrogeological reappraisal, an economic and engineering study and pilot-scale experiments, the Lea Valley has been shown to have the greatest potential for recharge. Artificial recharge into the Chalk at a rate of 9000 m3/d appears possible, through acidised 900 mm diameter boreholes. An understanding of the degree of interconnection between the Chalk and Basal Sands and of the causes of changes in quality of recharged water during storage was shown to be of particular importance to the successful operation of any recharge scheme using this system. A two-layer numerical groundwater model of the 800 km2 area and a surface/groundwater simulation model have been used to assist with the design of the 84,000 m3/d prototype scheme, and will also help in assessing its efficiency. The models will ultimately be used to manage the operation of the first stage development, now coming into use.  相似文献   

15.
Water of poor quality can directly impact the budget of water available for key user groups. Despite this importance, methods for quantifying the impact of water quality on water availability remain elusive. Here, we develop a new framework for incorporating the impact of water quality on water supply by modifying the Water Supply Stress Index (WaSSI). We demonstrate the usefulness of the framework by investigating the impact of high salinity waters on the availability of irrigation water for agriculture in Louisiana. The WaSSI was deconstructed into sectoral components such that the total available water supply could be reduced for a particular demand sector (agricultural irrigation in this example) based on available water quality information. The results for Louisiana highlight substantial impacts on water supply stress for farmers attributable to the landward encroachment of saline surface water and groundwater near the coast. Areas of high salinity near the coast also increased the competition for freshwater resources among the industrial, municipal, and agricultural demand sectors in the vicinities of the municipal areas of Lake Charles, Lafayette, and Baton Rouge, Louisiana. The framework developed here is easily adaptable for other water quality concerns and for other demand sectors, and as such can serve as a useful tool for water managers.  相似文献   

16.
Although groundwater is widely and increasingly exploited for potable water-supply in developing countries the threat of groundwater pollution has, as yet, received little attention. Activities currently producing the principal risks are described in some detail. A basis for rapid assessment of the degree of groundwater pollution risk is proposed, based on the evaluation of, and the interaction between, pollutant loading and aquifer vulnerability. Protection zones around individual groundwater supply sources can generally play, at most, only a minor role in overall policy. The strategy proposed is aquifer-oriented and activity-related. The evaluation of aquifer pollution vulnerability, made in the rapid risk assessment and based on three semi-independent criteria, could be used to select the required protection measures in relation to specific land-use activities.  相似文献   

17.
干旱区水环境质量的好坏直接决定着绿洲经济建设的水平.通过对玛纳斯河15年来的水质监测资料的分析、研究,从中寻找出该流域的地表及地下水质变化规律与发展趋势.研究结果表明:玛河径流形成区及山前倾斜平原区水质一直保持在一级未受污染级别;山前倾斜平原区地下水中挥发酚以及氮素含量逐年上升,但总体水质仍然保持在一级未受污染级别的范围.  相似文献   

18.
Abstract: There are four known geothermal resource areas in the Imperial Valley that have a combined potential of over 4,000 megawatts of electrical energy for 25 years. Water resources available to support geothermal enerfy development are imprted Colorado River water, agricultural waste waters, Salton Sea water, and groundwater. In addtion, geothermal power plants can produce their own cooling water from steam condensate. Nevertheless, the relatively high water requirements of geothermal facilities along with a series of real and potential constraints may cause water supply dilemmas involving both the acquistion and use of cooling water. Important constraints are institutional policies, water supply costs, technical problems, and impacts upon the Salton Sea. These constranits and related dilemmas are examined in light of relevanty information on the valley's water resources, geothermal resources and energy technologies, cooling water requrements, and water supply options.  相似文献   

19.
存在截渗墙情况下地下咸水恢复的优化方案   总被引:1,自引:0,他引:1  
本文首先分析了咸水分布区的自然地理和水文地质条件,然后对研究区的水文地质条件进行了概化,建立了相应的地下水水量和水质的数值模型,最后通过地下水模拟软件Visual—MODFLOW3.1对存在截渗墙情况下的不同咸水恢复方案进行了数值分析。研究结果表明。单纯的抽水方案对于高浓度咸水的去除非常有效,但是低浓度咸水残留量较大;抽水——注水方案对高低浓度的去除效果都比较好;而抽水优化方案对高浓度和低浓度的咸水的去除更加经济、快速和彻底。  相似文献   

20.
ABSTRACT: The impacts of regional groundwater quality and local agricultural activities on in-stream water quality in the Lower Truckee River, Nevada, were assessed through a detailed program of monitoring and computer simulation. An agricultural diversion and return-flow were monitored in great detail to determine mass loading rates of nutrients from agriculture in the area. Once characterized, the cumulative impacts of agricultural diversions and return-flows were evaluated using the Water Quality Assessment Program (WASP) to model nitrogen, phosphorus, periphyton, and dissolved oxygen. Monitoring showed that a significant proportion of the water diverted for agricultural purposes returned to the river as surface point return-flow (estimated at 13.9 percent $ 0.1 percent), and as groundwater diffuse return-flow (estimated at 27 percent $ 6 percent). Modeling efforts demonstrated the significant effect of assumed regional groundwater quality (nitrate) upon predicted periphyton growth and associated diel fluctuations of dissolved oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号