首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min?1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly.For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NOx and NO2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NOx emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.  相似文献   

2.

This article presents the results of investigations carried out to evaluate the improvement in combustion, performance, and emission characteristics of a diesel engine fueled with neat petro-diesel (PD), soybean biodiesel (SB), and 50% SB blended PD (PD50SB) by using carbon nanotube (CNT) as an additive. The acid–alkaline-based transesterification process with sodium hydroxide (NaOH) as a catalyst was applied to derive the methyl ester of SB. A mass fraction of 100 ppm CNT nanoparticle was blended with base fuels by using an ultrasonicator and the physiochemical properties were measured based on EN standards. The measured physiochemical properties are in good agreement with standard limits. The experimental evaluations were carried out under varying brake mean effective pressure (BMEP) conditions in a single-cylinder, four-stroke, and natural aspirated research diesel engine at a constant speed of 1500 rpm. The results reveal that the SB and its blend promote shorter ignition delay period (IDP) that is resulting in lower in-cylinder pressure (ICP) and net heat release rate (NHR) compared to PD. The SB and its blend increase the brake specific fuel consumption (BSFC), and reduce the brake specific energy consumption (BSEC) and exhaust gas temperature (EGT), due to lower heating value, and efficient combustion, respectively. As far as the emission characteristics are concerned, the SB and its blend promote lower magnitude of hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), and smoke emissions compared to PD except for oxides of nitrogen (NOx) emission. The CNT nanoparticle inclusion with base fuels significantly improves the combustion, performance, and emissions level irrespective of engine load conditions.

  相似文献   

3.
An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NOx, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h−1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h−1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.  相似文献   

4.
Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min?1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions.The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO2) emissions, but decrease in nitrogen oxides (NOx). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.  相似文献   

5.
The impact of vehicular emissions on air depends, among other factors, on the composition of fuel and the technology used to build the engines. The reduction of vehicular emissions requires changes in the fuel composition, and improving the technologies used in the manufacturing of engines and for the after-treatment of gases. In general, improvements to diesel engines have targeted not only emission reductions, but also reductions in fuel consumption. However, changes in the fuel composition have been shown to be a more rapid and effective alternative to reduce pollution. Some factors should been taken into consideration when searching for an alternative fuel to be used in diesel engines, such as emissions, fuel stability, availability and its distribution, as well as its effects on the engine durability. In this work, 45 fuel blends were prepared and their stability was evaluated. The following mixtures (v/v/v) were stable for the 90-day period and were used in the emission study: diesel/ethanol – 90/10%, diesel/ethanol/soybean biodiesel – 80/15/5%, diesel/ethanol/castor biodiesel – 80/15/5%, diesel/ethanol/residual biodiesel – 80/15/5%, diesel/ethanol/soybean oil – 90/7/3%, and diesel/ethanol/castor oil – 90/7/3%. The diesel/ethanol fuel showed higher reduction of NOx emission at a lower load (2 kW) when compared with pure diesel. The other fuels showed a decrease of NOx emissions in the ranges of 6.9–75% and 4–85% at 1800 rpm and 2000 rpm, respectively. The combustion efficiencies of the diesel can be enhanced by the addition of the oxygenate fuels, like ethanol and biodiesel/vegetable oil, resulting in a more complete combustion in terms of NOx emission. In the case of CO2 the decreases were in the ranges of 5–24% and 4–6% at 1800 rpm and 2000 rpm, respectively. Meanwhile, no differences were observed in CO emission. The carbonyl compounds (CC) studied were formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, crotonaldehyde, butyraldehyde, butanone, benzaldehyde, isovaleraldehyde, valeraldehyde, o-toluenaldehyde, m-toluenaldehyde, p-toluenaldehyde, hexaldehyde, octaldehyde, 2,5-dimethylbenzaldehyde, and decaldehyde. Among them, formaldehyde, acetaldehyde, acetone, and propionaldehyde showed the highest emission concentrations. When ternary blend contains vegetable oil, there is a strong tendency to increase the emissions of the high weight CC and decrease the emissions of the low weight CC. The highest concentration of acrolein was observed when the fuel contains diesel, ethanol and biodiesel. With the exception of NOx, the use of ternary blended fuels resulted on the increase in the emission rates of the studied compounds.  相似文献   

6.
The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h)?1 and that of diesel is 30.7 mg (kW h)?1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.  相似文献   

7.

The performance of engine parameters is more influenced with fuel injection strategies namely start of main injection timing (SoMI). An experimental analysis was performed to find the optimum SoMI timing based on performance, emission, and combustion characteristics. Base fuel of diesel and neem biodiesel was used as test fuels. The neem biodiesel was prepared by esterification and transesterification process. It is found from literature that neem biodiesel blend NB20 with diesel gives optimum performance and emission characteristics; therefore, NB20 blend was used for experiments. A variable geometry turbocharger (VGT) compression ignition (CI) engine was used to conduct the experiments. Engine performance parameters were estimated and compared with a base fuel of diesel and with NB20 blends. In this experimentation, fuel injection pressure (FIP) of 800 bar and engine speed of 1700 rpm were considered. SoMI timing was varied from 2° to 10° bTDC with an increment of 2° bTDC timing. Cylinder pressure (CP) and heat release rate (HRR) were estimated and found that are higher for diesel fuel compared to NB20 blend at different SoMI timings. The addition of neem biodiesel NB20 blend to diesel fuel decreases the exhaust emissions except NOx emissions. The BSFC was considerably reduced and BTE was improved almost equivalent to the diesel fuel for NB20. From the results, it is concluded that 10° bTDC SoMI timing provides 13% improvement in BTE, 21% decrement in BSFC, and 7.5% reduction in CO2 emissions.

  相似文献   

8.

Biofuels extracted from plant biomass can be used as fuel in CI engines to lower a hazardous atmospheric pollutant and mitigate climate risks. Furthermore, its implementation is hampered by inevitable obstacles such as feedstocks and the crop area required for their cultivation, leading to a lack of agricultural land for the expansion of food yields. Despite this, microalgae have been discovered to be the most competent and unwavering source of biodiesel due to their distinguishing characteristics of being non-eatable and requiring no cropland for cultivation. The objectives of this paper was to look into the potential of a novel, formerly underappreciated biodiesel from microalgae species which could be used as a fuel substitute. Transesterification is being used to extract the biodiesel. Microalgae are blended with petroleum diesel in percentage to create microalgae blends (MAB) as needed for experimentation. The impact of biodiesel on performance as well as exhaust emission attributes of a 1-cylinder diesel engine was experimentally studied. Compared to petroleum diesel, different blend of microalgae biodiesel showed a decline in torque and hence brake power, resulting in an average fall of 7.14 % in brake thermal efficiency and 11.54 % increase in brake-specific fuel consumption. There were wide differences in exhaust emission characteristics, including carbon monoxide and hydrocarbon, as the blend ratio in diesel increased. Moreover, nitrogen oxides and carbon dioxides increase in all algae biodiesel blends, but they are still within the acceptable range of petroleum diesel.

  相似文献   

9.
This paper presents the regulated and unregulated exhaust emissions of a diesel passenger vehicle, operated with low sulphur automotive diesel and soy methyl ester blends. Emission and fuel consumption measurements were conducted under real driving conditions (Athens Driving Cycle, ADC) and compared with those of a modified New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, equipped with an indirect injection diesel engine, fuelled with diesel fuel and biodiesel blends at proportions of 5, 10, and 20% respectively. Unregulated emissions of 11 polycyclic aromatic hydrocarbons (PAHs), 5 nitro-PAHs, 13 carbonyl compounds (CBCs) and the soluble organic fraction (SOF) of the particulate matter were measured. Qualitative hydrocarbon analysis was also performed on the SOF. Regulated emissions of NOx, CO, HC, CO2, and PM were also measured over the two test cycles. It was established that some of the emissions measured over the (hot-start) NEDC differed from the real-world cycle. Significant differences were also observed in the vehicle's fuel consumption between the two test cycles. The addition of biodiesel reduced the regulated emissions of CO, HC and PM, while an increase in NOx was observed over the ADC. Carbonyl emissions, PAHs and nitro-PAHs were reduced with the addition of biodiesel over both driving cycles.  相似文献   

10.
Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250–300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.  相似文献   

11.
To explore the effect of biodiesel and sulfur content on PM2.5 emissions, engine dynamometer tests were performed on a Euro II engine to compare the PM2.5 emissions from four fuels: two petroleum diesel fuels with sulfur contents of 50 and 100 ppm respectively, and two B20 fuels in which soy methyl ester (SME) biodiesel was added to each of the above mentioned petroleum diesel fuels (v/v: 80%/20% for petroleum diesel and SME respectively). Gaseous pollutants and PM2.5 emissions were sampled with an AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp). Measurements were made of the PM2.5 mass, organic carbon (OC), elemental carbon (EC) and the water-soluble ion distribution. The results showed that PM2.5 emissions decreased with lower sulfur content or blending with SME biodiesel, and the decrease would be more by applying both two methods together. Particles of approximately 0.13 μm contributed 48–83% of PM2.5 emissions. The impact of sulfur content on this percentage was different for low and high engine speed. The majority of PM2.5 was comprised of OC and EC, and the carbon emission rate had the same trend as PM2.5. Since the EC abatement of B20 was larger than OC, the OC/EC ratio of B20 was always larger than that of petroleum diesel. For petroleum diesel, the OC/EC increased with sulfur content, which was not the case for B20. The SO42? had highest emission rate in the water-soluble ions of PM.  相似文献   

12.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

13.

The depletion of fossil fuels and hike in crude oil prices were some of the main reasons to explore new alternatives from renewable source of energy. This work presents the impact of various bowl geometries on diesel engine with diesel and biodiesel samples. Three non-edible oils were selected, namely pumpkin seed oil, orange oil and neem oil. These oils were converted into respective biodiesel using transesterification process in the presence of catalyst and alcohol. After transesterification process, the oils were termed as pumpkin seed oil methyl ester (PSOME), orange oil methyl ester (OME) and neem oil methyl ester (NOME), respectively. The engine used for experimentation was a single-cylinder four-stroke water-cooled direct-injection diesel engine and loads were applied to the engine using eddy current dynamometer. Two bowl geometries were developed, namely toroidal combustion chamber (TCC) and trapezoidal combustion chamber (TRCC). Also, the engine was inbuilt with hemispherical combustion chamber (HCC). The base line readings were recorded using neat diesel fuel with HCC for various loads. Followed by 20% of biodiesel mixed with 80% neat diesel for all prepared methyl esters and termed as B1 (20% PSOME with 80% diesel), B2 (20% OME with 80% diesel) and B3 (20% NOME with 80% diesel). All fuel samples were tested in HCC, TCC and TRCC bowl geometries under standard injection timing and with compression ratio of 18. Increased brake thermal efficiency and reduced brake specific fuel consumption were observed with diesel in TCC geometry. Also, higher heat release and cylinder pressures with lower ignition delay were recorded with TCC bowl geometry. TCC bowl geometry showed lower CO, HC and smoke emissions with B2 fuel sample than diesel and other biodiesel samples. But, higher NOx emission was observed in HCC and TCC than that in TRCC bowl geometry.

?

  相似文献   

14.
Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.  相似文献   

15.

Over the past years, there were dramatic improvements in identifying and assessing various feedstocks for the production of biodiesel fuels. To promote a particular feedstock as a renewable source of energy, it is important to analyze their energy, economic, and engine performance characteristics. The current work attempts to evaluate the net energy and economic indices for both fossil diesel and coconut-blended diesel (B20) considering the diesel consumption by the Indian railways. Further, we present the experimental results of a multi-cylinder diesel engine operated with neat coconut biodiesel (B100) and fossil diesel at various load and speed conditions. The engine experiments reveal that the coconut biodiesel exhibits leaner combustion and shorter ignition delay than fossil diesel. Lower amount of carbon monoxide, hydrocarbon, and smoke emission is observed in the case of coconut biodiesel, with higher levels of nitric oxide (14%) and fuel consumption than diesel. The coefficient of variation in indicated mean effective pressure is within the range of better driveability zone for both the fuels at all test conditions. Overall the engine performance, emission and combustion results with neat coconut biodiesel are favorable with a penalty in NO emission at high load conditions. The techno-economical study highlights higher production cost per liter of B20 than the cost of fossil diesel. However, the net energy ratio (NER) for B20 is 1.021, favoring higher output than diesel and thus lowers the dependency on crude oil.

  相似文献   

16.
The use of biodiesel fuel as a substitute for fossil fuel in diesel engines has received increasing attention in recent years. This study is the first to investigate and compare the characteristics of mutagenic species, trans,trans-2,4-decadienal (tt-DDE), and polycyclic aromatic hydrocarbons (PAHs) in the diluted exhaust of diesel engines operated with diesel and biodiesel blend fuels. An engine of current design was operated on a dynamometer consistent with the US federal test procedure transient-cycle specifications. Petroleum diesel and a blend of petroleum diesel and biodiesel (B20) were tested. Exhaust sampling was carried out on diluted exhaust in a dilution tunnel with a constant-volume sampling system. Concentrations of tt-DDE and PAHs were analyzed by GC/MS. Although average PAH emission factors decreased from 1403 to 1051 μg bhp-h−1, the results show that tt-DDE is evidently generated (1.28 μg bhp-h−1) in the exhaust of diesel engine using B20 as fuel. This finding suggests that tt-DDE emission from the use of biodiesel should be taken into account in characterization and health-risk assessment. The results also show that tt-DDE is depleted in the diesel engine combustion process and the existence of tt-DDE in biodiesel is the major source of tt-DDE emission. The distribution of tt-DDE in the particulate phase is 55.3% under this study's sampling conditions. For diesel and B20, PAH phase distributions have similar trends. Lower molecular weight PAHs predominate in gaseous phase for both diesel and B20. Cold-start driving has higher tt-DDE and PAH emission factors, as well as a higher percentage of tt-DDE in particulate phase, than for warm-start driving.  相似文献   

17.
Five biodiesels from different feedstocks (rapeseed, soy, sunflower, palm, and used fried oils) blended with diesel at 10% vol. ratio (B10), were tested on a Euro 3 common-rail passenger car. Limited effects (−2% to +4%) were observed on CO2 emissions. CO and HC emissions increased between 10% and 25% on average, except at high speed - high power where emissions were too low to draw conclusions. NOx emissions increased by up to 20% for two out of the five blends, decreased by up to 15% for two other blends, and remained unchanged for one blend. Particulate matter (PM) was reduced for all blends by up to 25% and the reductions were positively correlated with the extent of biodiesel saturation. PM reductions are associated with consistent reductions in non-volatile particle number. A variable behaviour in particle number is observed when volatile particles are also accounted.  相似文献   

18.
Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine   总被引:1,自引:0,他引:1  
The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.  相似文献   

19.

In this work, the development and usability of kapok oil in diesel engine was intended. With this purpose, the piston crowns are coated with mullite–lanthanum (ML) ceramic composite at varying compositions in order to reduce the heat rejection during combustion process. The kapok oil is blended with diesel fuel consisting of (20% kapok oil–80% diesel) volumetrically named B fuel. The B and diesel (D) fuels are taken for the engine performance test with different coated piston (ML1, ML2, and ML3) and exhaust gas recirculation (EGR—10%, 20%, and 30%), compression ratio (CR—16, 17, and 18) and engine load (50%, 75%, and 100%). Also, the engine performance study on brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), hydrocarbons (HCs), oxides of nitrogen (NOx), carbon monoxide (CO), smoke opacity, and numerical study using ANSYS software is carried out. When operated with ML2-coated pistons with B fuel, maximum BTE value of 29.2%, minimum BSFC value of 0.224 kg/kW-h, CO emission of 0.2%, and smoke opacity of 39 ppm were observed. The results showed that ML2-coated piston considerably improved the performance of the test engines when compared with ML1 and ML3 coatings. Except for NOx emission, all other pollutant emission values were reduced. The numerical analysis using ANSYS software for ML2-coated pistons showed better retention of in-cylinder chamber temperature.

  相似文献   

20.
Diesel engine emissions are composed of a long list of organic compounds, ranging from C2 to C12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic.The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed.Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed.The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号