首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Paris Agreement of the 21st Conference of the Parties of the United Nations Framework Convention on Climate Change refers to the 1.5 °C target as well as the 2 °C target, and it is important to estimate the emission pathways and mitigation measures for the 1.5 °C target for the discussions on the target. The possible emission pathways vary widely because of the uncertainties involved. We assumed three kinds of temperature trajectories for meeting below 1.5 °C compared with the pre-industrial level, and three numbers for the climate sensitivity. The first trajectory remains below 1.5 °C all the time until 2300, the second overshoots but returns to below 1.5 °C by 2100, and the third overshoots but returns to below 1.5 °C by 2300. There are large differences in terms of 2030 emissions between the estimate from the submitted Nationally Determined Contributions (NDCs) and any of assessed emission pathways involving climate sensitivity of 3.0 °C or higher, and high emission reduction costs were estimated, even for 2030. With climate sensitivity of 2.5 °C, only the third trajectory exhibits consistent emissions in 2030 with the NDCs. However, this case also appears very difficult to achieve, requiring enormous amounts of negative emissions after the middle of this century toward 2300. A climate mitigation strategy aiming for the 1.5 °C target will be debatable, because we face serious difficulties in near- or/and long-term for all the possible emission pathways, and therefore, we should rather focus on actual emission reduction activities than on the 1.5 °C target with poor feasibility.  相似文献   

2.
3.
Predicting CO2 emissions is of significant interest to policymakers and scholars alike. The following article contributes to earlier work by using the recently released “shared socioeconomic pathways” (SSPs) to empirically model CO2 emissions in the future. To this end, I employ in-sample and out-of-sample techniques to assess the prediction accuracy of the underlying model, before forecasting countries’ emission rates until 2100. This article makes three central contributions to the literature. First, as one of the first studies, I improve upon the Representative Concentration Pathways (RCPs) by incorporating the SSPs, which did not exist when the RCPs have been released. Second, I calculate predictions and forecasts for a global sample in 1960–2100, which circumvents issues of limited time periods and sample selection bias in previous research. Third, I thoroughly assess the prediction accuracy of the model, which contributes to providing a guideline for prediction exercises in general using in-sample and out-of-sample approaches. This research presents findings that crucially inform scholars and policymakers, especially in light of the prominent 2 °C goal: none of the five SSP scenarios is likely to be linked to emission patterns that would suggest achieving the 2 °C goal is realistic.  相似文献   

4.
The effects of a 1.5 °C global change on irrigation costs and carbon emissions in a groundwater-dependent irrigation system were assessed in the northwestern region of Bangladesh and examined at the global scale to determine possible global impacts and propose necessary adaptation measures. Downscaled climate projections were obtained from an ensemble of eight general circulation models (GCMs) for three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5 and were used to generate the 1.5 °C warming scenarios. A water balance model was used to estimate irrigation demand, a support vector machine (SVM) model was used to simulate groundwater levels, an energy-use model was used to estimate carbon emissions from the irrigation pump, and a multiple linear regression (MLR) model was used to simulate the irrigation costs. The results showed that groundwater levels would likely drop by only 0.03 to 0.4 m under a 1.5 °C temperature increase, which would result in an increase in irrigation costs and carbon emissions ranging from 11.14 to 148.4 Bangladesh taka (BDT) and 0.3 to 4% CO2 emissions/ha, respectively, in northwestern Bangladesh. The results indicate that the impacts of climate change on irrigation costs for groundwater-dependent irrigation would be negligible if warming is limited to 1.5 °C; however, increased emissions, up to 4%, from irrigation pumps can have a significant impact on the total emissions from agriculture. This study revealed that similar impacts from irrigation pumps worldwide would result in an increase in carbon emissions by 4.65 to 65.06 thousand tons, based only on emissions from groundwater-dependent rice fields. Restricting groundwater-based irrigation in regions where the groundwater is already vulnerable, improving irrigation efficiency by educating farmers and enhancing pump efficiency by following optimum pumping guidelines can mitigate the impacts of climate change on groundwater resources, increase farmers’ profits, and reduce carbon emissions in regions with groundwater-dependent irrigation.  相似文献   

5.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   

6.
The global waste sector produces, on average, 2–5 % of global anthropogenic greenhouse gas (GHG) emissions. The amount of GHG emissions has grown steadily and is predicted to increase considerable in the forthcoming decades because of the increases in population and gross domestic product (GDP). However, the GHG mitigation opportunities for the sector are still fully not exploited, in particularly in developing countries. A series of initiatives were highly successful and showed that large reductions in emissions are possible. This study aims to propose a holistic quantification model, which can be used for estimation of waste generation and evaluation of the potential reduction of GHG emissions in waste sector for developing countries with a particular application to Vietnam. The two scenarios set for the study were business as usual (BaU) which waste management is assumed to follow past and current trends and CounterMeasure (CM) which alternative waste treatment and management are assessed. Total emissions in the BaU scenario are projected to increase from 29.47 MtCO2eq in 2010 to 85.60 MtCO2eq by 2030 and 176.32 MtCO2eq by 2050. The highest emissions are due to methane (CH4) released by disposal sites, accounting for about 60 % of the GHG emissions from waste in Vietnam in 2030. This emission is projected to increase significantly (67 % in 2050), unless more of the methane is captured and used for energy generation. The CM scenario gives emission reductions from 25.7 % (2020), 40.5 % (2030) to 56.6 % (2050) compared to the BaU scenario. The highest GHG reduction is achieved through recycling, followed by methane recovery to optimize the co-benefit for climate change mitigation.  相似文献   

7.
铝工业是高能耗高排放工业,探索铝工业的节能减排路径有助于我国实现《巴黎协定》中的温室气体减排承诺.采用物质流分析和生命周期评价方法,基于存量水平、技术水平和能源结构设置了15种情景,研究了我国铝工业1990~2100年的能耗和碳排放量,探索不同路径下的节能减排潜力.我国铝在用存量将在2040~2050年达到峰值(4.6...  相似文献   

8.
China, as the world’s largest emitter, intends to achieve the peaking of carbon dioxide (CO2) emissions around 2030 and to make best efforts to peak early to mitigate global change. Under this strategy, a dynamic, recursive computable general equilibrium (CGE) model is used to analyze the economy, energy, and environment impact of CO2 emission reduction policy based on 17 scenarios in China: carbon tax, emission trading scheme (ETS), and the mixed policy in different price level, in order to find out which kind of emission reduction strategy is more feasible. The results show that CO2 emission in 2030 will be reduced with the implementation of tax, ETS and mixed policy, by 10–13 %, 12–14 %, and 18–28 %, respectively. From 2016 to 2030, China can reduce 18,338–24,156 Mt CO2 through the implementation of mixed policy. Furthermore, relative to single policy, mixed policy has stronger effects on primary energy consumption cut, by 738–1124 Mtoe or 18–28 %, which will make CO2 emissions reach a peak before 2030 and the peak emission is not greater than 12 billion tons which is in line with the reduction demand in China. Thus, the mixed policy is the most effective strategy so that mixed policy is recommended to parties included in Annex I in United Nations Framework Convention on Climate Change Kyoto Protocol and other countries with large potential of emission reduction, while ETS is suggested to countries with low carbon emissions per capita which can balance economic development and CO2 mitigation.  相似文献   

9.
In the present paper, national and externally organized projections of greenhouse gas emissions for Austria were compared to gain insight on the underlying scenario data assumptions. National greenhouse gas emission trends extend until 2030, an assessment of European Union (EU) countries to 2050. In addition, data for 2000–2100 was extracted from the global emission database described by the Representative Concentration Pathways (RCP). By identifying trends in these projections, it was possible to produce (a) a long-term assessment of national scenarios until 2100, (b) an assessment of the ambition level toward national climate strategies, and (c) a standardized method to compare trends across countries. By extracting RCP data, Austrian’s methane, nitrous oxide, and carbon dioxide emissions up to 2100 could be projected for all sources as well as specific sectors. With respect to the RCP scenario emission data, national projections did not seem to employ the mitigation potentials available for the most stringent RCP scenario, RCP2.6. Comparing projections that supported the EU Climate Strategy 2030 with national projections revealed similar trends. Because RCP2.6 is the only scenario consistent with a 2 °C global warming target, and it is much more ambitious than any of the national or European projections, further measures will be required if Austria is to adequately contribute to this widely accepted policy goal.  相似文献   

10.
崔学勤  王克  邹骥 《中国环境科学》2016,36(12):3831-3840
基于气候公平的不同原则,采用动态的衡量指标,建立了公平分配未来碳排放空间的综合性框架,计算了基数、平等、能力、责任和混合方案下2010~2100年全球累积碳排放配额的地区分布,并评估了美欧中印“国家自主贡献(Intended Nationally Determined Contribution,INDC)”目标的力度,提出了各国减排目标力度应当增加的程度.结果表明:美欧中印总体的INDC力度离实现2℃目标仍有差距,不同方案下的排放差距为8.0~9.6Gt CO2,超出2030年2℃目标下全球排放的比例为20%~24%.在各自最为有利的方案下,中印能满足实现2℃目标的公平分配方案的低限要求.而在所有方案下美欧距离实现2℃目标的公平分配要求均有差距,需要进一步提高力度.公平指标的动态和静态衡量方法,以及历史责任计量起始年的选取,对公平分配的结果影响很大.  相似文献   

11.
A methodology is presented here to assess the potential long-term contribution of non-CO2 greenhouse gases in mitigation scenarios. The analysis shows the future development of the mitigation potential of non-CO2 gases (as a function of changes in technology and implementation barriers) to represent a crucial parameter for the overall costs of mitigation scenarios. The recently developed marginal abatement cost curves for 2010 in the EMF-21 project are taken as the starting point. First-order estimates were made of the future maximum attainable reduction potentials and costs on the basis of available literature. The set of MAC curves developed was used in a multi-gas analysis for stabilising greenhouse gas concentrations at 550 ppm CO2-equivalent. Including future development for the non-CO2 mitigation options not only increases their mitigation potential but also lowers the overall costs compared to situations where no development is assumed (3–21% lower in 2050 and 4–26% lower in 2100 in our analysis). Along with the fluorinated gases, energy-related methane emissions make up the largest share in total non-CO2 abatement potential as they represent a large emission source and have a large potential for reduction (towards 90% compared to baseline in 2100). Most methane and nitrous oxide emissions from landuse-related sources are less simple to abate, with an estimated abatement potential in 2100 of around 60% and 40%, respectively.  相似文献   

12.
We perform a scenario analysis of three strategies for long-term energy savings and carbon dioxide (CO2) emission reductions in iron and steel production in China, using a linear optimization modeling framework industry sector energy efficiency modeling (ISEEM). The modeling includes annual projections for one base scenario representing business-as-usual (BAU) and three additional scenarios representing different strategies to reduce annual energy use and CO2 emissions from 2010 to 2050. Specifically, the three scenarios for cost-optimization modeling include changing the production share (PS), predefining emission reduction (ER) target, and stipulating carbon emission pricing (CP), respectively. While the three strategies are projected to result in similar annual energy savings by approximately 15 % compared to that of the BAU scenario in year 2050, the carbon emission pricing strategy brings about the highest annual energy savings in the medium term (e.g., 2025). In addition, adopting carbon emission pricing strategy will result in the highest emission reduction from BAU with much higher costs, i.e., by 20 % in 2025 and 41 % in 2050, while adopting either PS or ER strategies will result in a moderate level of emission reduction from BAU, i.e., by approximately 4 % in 2025 and 14 % in 2050. The analysis of China’s national strategies to reduce energy use and emissions provides important implications for global mitigation strategies.  相似文献   

13.
Managing forests to increase carbon sequestration or reduce carbon emissions and using wood products and bioenergy to store carbon and substitute for other emission-intensive products and fossil fuel energy have been considered effective ways to tackle climate change in many countries and regions. The objective of this study is to examine the climate change mitigation potential of the forest sector by developing and assessing potential mitigation strategies and portfolios with various goals in British Columbia (BC), Canada. From a systems perspective, mitigation potentials of five individual strategies and their combinations were examined with regionally differentiated implementations of changes. We also calculated cost curves for the strategies and explored socio-economic impacts using an input-output model. Our results showed a wide range of mitigation potentials and that both the magnitude and the timing of mitigation varied across strategies. The greatest mitigation potential was achieved by improving the harvest utilization, shifting the commodity mix to longer-lived wood products, and using harvest residues for bioenergy. The highest cumulative mitigation of 421 MtCO2e for BC was estimated when employing the strategy portfolio that maximized domestic mitigation during 2017–2050, and this would contribute 35% of BC’s greenhouse gas emission reduction target by 2050 at less than $100/tCO2e and provide additional socio-economic benefits. This case study demonstrated the application of an integrated systems approach that tracks carbon stock changes and emissions in forest ecosystems, harvested wood products (HWPs), and the avoidance of emissions through the use of HWPs and is therefore applicable to other countries and regions.  相似文献   

14.
To avoid dangerous changes to the climate system, the global mean temperature must not rise more than 2 °C from the 19th century level. The German Advisory Council on Global Change recommends maintaining the rate of change in temperature to within 0.2 °C per decade. This paper supposes that a geoengineering option of solar radiation management (SRM) by injecting aerosol into the Earth’s stratosphere becomes applicable in the future to meet those temperature conditions. However, a failure to continue the use of this option could cause a rapid temperature rebound, and thus we propose a principle of SRM use that the temperature conditions must be satisfied even after SRM termination at any time. We present economically optimal trajectories of the amounts of SRM use and the reduction of carbon dioxide (CO2) emissions under our principle by using an economic model of climate change. To meet the temperature conditions described above, the SRM must reduce radiative forcing by slightly more than 1 W/m2 at most, and industrial CO2 emissions must be cut by 80 % by the end of the 21st century relative to 2005, assuming a climate sensitivity of 3 °C. Lower-level use of SRM is required for a higher climate sensitivity; otherwise, the temperature will rise faster in the case of SRM termination. Considering potential economic damages of environmental side effects due to the use of SRM, the contribution of SRM would have to be much smaller.  相似文献   

15.
Climate change and energy service demand exert influence on each other through temperature change and greenhouse gas emissions. We have consistently evaluated global residential thermal demand and energy consumption up to the year 2050 under different climate change scenarios. We first constructed energy service demand intensity (energy service demand per household) functions for each of three services (space heating, space cooling, and water heating). The space heating and cooling demand in 2050 in the world as a whole become 2.1–2.3 and 3.8–4.5 times higher than the figures for 2010, whose ranges are originated from different global warming scenarios. Cost-effective residential energy consumption to satisfy service demand until 2050 was analyzed keeping consistency among different socio-economic conditions, ambient temperature, and carbon dioxide (CO2) emission pathways using a global energy assessment model. Building shell improvement and fuel fuel-type transition reduce global final energy consumption for residential thermal heating by 30% in 2050 for a 2 °C target scenario. This study demonstrates that climate change affects residential space heating and cooling demand by regions, and their desirable strategies for cost-effective energy consumption depend on the global perspectives on CO2 emission reduction. Building shell improvement and energy efficiency improvement and fuel fuel-type transition of end-use technologies are considered to be robust measures for residential thermal demand under uncertain future CO2 emission pathways.  相似文献   

16.
基于发电行业节能减排技术的现有应用规划,预测3种不同的GDP增长情景,即减速发展,基准情景和高速发展情景下,若能实现我国现有关于发电行业节能减排技术的规划目标,2020年发电行业的CO2排放量将达到35.32,39.15,43.20亿t.同时基于中国2020年碳强度减排承诺,计算得国家2020年CO2排放目标在不同发展情景下将达到97.30~127.96亿t不等.结合上述结果讨论,发电行业规划目标相符要求2020年的CO2排放比例为33.27%~36.82%.结果表明,若能实现我国现有关于发电行业节能减排技术的规划目标,则对应于不同的GDP增长速度,发电行业总碳排放量能够完成国家承诺碳强度减排的分解目标.  相似文献   

17.
The European Union (EU) has set a target to reduce its greenhouse gas (GHG) emissions at least 10 % below the 2005 levels by 2020 in the non-Emission Trading Sector (non-ETS). As part of this, each Member State has a binding national emission limitation target for the non-ETS sector. Finland’s target, examined as a case study in this paper, is to reduce emissions at least 16 % below 2005 levels by 2020. The objective of this study is to find cost optimal mitigation portfolios that meet Finland’s reduction target and to analyze the risks of not attaining the emission target or exceeding the assumed costs. The question was addressed with a stochastic optimization model, Stochastic Optimization of non-ETS Emissions (SONETS) selecting separate mitigation measures that meet the target on expectation. The results show that optimal portfolios include relatively high uncertainty both in costs and achieved reductions. The prices of crude oil and diesel, and the abatement cost of reducing hydrofluorocarbon (HFC) emissions seem to account for the majority of uncertainty regarding total costs. The baseline predictions for various non-ETS subsectors (such as transport and agriculture) were found to have the greatest contribution to the uncertainty of attaining emission target. The results also show that some abatement actions are chosen in nearly all efficient portfolios, while other actions are seldom chosen. For example replacing oil burners in the end of technical life time or recovery of methane (CH4) from waste are often chosen whereas ban of landfilling of organic waste is chosen extremely seldom. It also seems that the results are somewhat sensitive to the inclusion or exclusion of the interdependencies of mitigation measures.  相似文献   

18.
从社会经济活动的角度出发,创新性地构建包含中国终端部门的新型综合评估模型—RICE-LEAP模型,并通过情景设置动态模拟2020~2050年建筑全产业链碳排放的发展路径及其结构性特征.结果表明:①与参考情景相比,考察期内1.5℃情景下中国碳排放总量的额外累计减排量将达到129.74Gt CO2,而建筑全产业链碳排放的额外累计减排量为57.53Gt CO2,占比44.28%.②建筑业是典型的“表观低碳、隐含高碳”的行业.建筑业直接碳排放占建筑物化碳排放的比例较小,仅占9.46%~11.75%.③3个动态情景下,建筑物化碳排放的下降速率均快于建筑运行碳排放.这是由于建筑物化碳排放主要依赖工业等终端部门的脱碳进程,在实现碳达峰过程中具有先发优势.④现阶段,建筑全产业链能耗仍以煤炭消费为主,但煤炭的消费占比在3个动态情景中均呈现出不同程度的下降,而电力的消费占比则呈现出明显的上升趋势.  相似文献   

19.
The main objective of the study was to calculate net atmospheric impacts for wood production and utilization in Finnish boreal forest conditions. Net atmospheric impacts were calculated by comparing net CO2 exchanges of the wood production and utilization to the reference management regime. Net CO2 exchanges were simulated with a life cycle assessment (LCA) tool for a Scots pine (Pinus sylvestris L.) stand (MT, Myrtillys-type) in central Finland (Joensuu region, 62°39 N, 29°37 E) over two consecutive rotation periods (100?+?100 years/200 years). Net atmospheric impacts were calculated both for sawn timber and pulpwood, and expressed in kgCO2m?3. According to the results, the production of pulp and sawn timber produced emissions of 0.20 and 0.59 kgCO2m?3 over the 200-year period, respectively, when the unmanagement regime was used as the reference management regime. When 50 % of the processing waste of timber was accounted as an instant emission to the atmosphere, the atmospheric impact increased to 0.55 kgCO2m?3 in pulpwood and to 1.27 kgCO2m?3 in sawn timber over the 200 year period. When turnover rates of sawn timber in the technosystem were decreased by 30 % and the share of energy use was decreased to 30 %, the atmospheric impact decreased by 17 % and 4 % for pulpwood and sawn timber, respectively, compared to the default wood degradation and energy use of 50 %. The utilized LCA approach provided an effective tool for approaching net atmospheric impacts originating from the ecosystem carbon (C) flows and variable wood utilization. Taking the ecosystem production and utilization of wood (i.e. degradation of technosystem C stock) into account, in terms of net CO2 exchange, the mitigation possibilities of wood compared to other products can be accounted for more precisely in the future and C sequestration credited more specifically for a certain wood product.  相似文献   

20.
Most modelling studies that explore long-term greenhouse gas mitigation scenarios focus on cost-efficient emission pathways towards a certain climate target, like the internationally agreed target to keep global temperature increase below 2 °C compared to pre-industrial levels (the 2 °C climate target). However, different timing of reductions lead to different transient temperature increase over the course of the century and subsequently to differences in the time profiles of not only the mitigation costs but also adaptation costs and residual climate change damage. This study adds to the existing literature by focussing on the implication of these differences for the evaluation of a set of three mitigation scenarios (early action, gradual action and delayed action), all three limiting global temperature increase below 2 °C above pre-industrial levels, using different discount rates. The study shows that the gradual mitigation pathway is, for these discount rates, preferred over early or delayed action in terms of total climate costs and net benefits. The relative costs and benefits of the early or delayed mitigation action scenarios, in contrast, do strongly depend on the discount rate applied. For specific discount rates, these pathways might therefore be preferred for other reasons, such as reducing long-term uncertainty in climate costs by early action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号