首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field investigation of a TCE plume in a surficial sand aquifer shows that groundwater-surface water interactions strongly influence apparent plume attenuation. At the site, a former industrial facility in Connecticut, depth-discrete monitoring along three cross-sections (transects) perpendicular to groundwater flow shows a persistent VOC plume extending 700 m from the DNAPL source zone to a mid-size river. Maximum TCE concentrations along a transect 280 m from the source were in the 1000s of microg/L with minimal degradation products. Beyond this, the land surface drops abruptly to a lower terrace where a shallow pond and small streams occur. Two transects along the lower terrace, one midway between the facility and river just downgradient of the pond and one along the edge of the river, give the appearance that the plume has strongly attenuated. At the river, maximum TCE concentrations in the 10s of microg/L and similar levels of its degradation product cis-DCE show direct plume discharge from groundwater to the river is negligible. Although degradation plays a role in the strong plume attenuation, the major attenuation factor is partial groundwater plume discharge to surface water (i.e. the pond and small streams), where some mass loss occurs via water-air exchange. Groundwater and stream mass discharge estimates show that more than half of the plume mass discharge crossing the first transect, before surface water interactions occur, reaches the river directly via streamflow, although river concentrations were below detection due to dilution. This study shows that groundwater and surface water concentration measurements together provide greater confidence in identifying and quantifying natural attenuation processes at this site, rather than groundwater measurements alone.  相似文献   

2.
Key attributes of the source zone and the expanding dissolved plume at a trichloroethene (TCE) site in Australia were evaluated using trends in groundwater monitoring data along with data from on-line volatile organic compound (VOC) samplers and passive flux meters (PFMs) deployed in selected wells. These data indicate that: (1) residual TCE source mass in the saturated zone, estimated using two innovative techniques, is small ( 10 kg), which is also reflected in small source mass discharge ( 3 g/day); (2) the plume is disconnecting, based on TCE concentration contours and TCE fluxes in wells along a longitudinal transect; (3) there is minimal biodegradation, based on TCE mass discharge of  6 g/day at a plume control plane  175 m from source, which is also consistent with aerobic geochemical conditions observed in the plume; and (4) residual TCE in the vadose zone provides episodic inputs of TCE mass to the plume during infiltration/recharge events. TCE flux data also suggest that the small residual TCE source mass is present in the low-permeability zones, thus making source treatment difficult. Our analysis, based on a synthesis of the archived data and new data, suggests that source treatment is unwarranted, and that containment of the large TCE plume ( 1.2 km long,  0.3 km wide; 17 m deep;  2000–2500 kg TCE mass) or institutional controls, along with a long-term flux monitoring program, might be necessary. The flux-based site management approach outlined in this paper provides a novel way of looking beyond the complexities of groundwater contamination in heterogeneous domains, to make intelligent and informed site decisions based on strategic measurement of the appropriate metrics.  相似文献   

3.
Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 μg L−1) was identified in a low permeable silty-clay aquifer (Kh = 0.5 m d−1) that was within 6 m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5.1 cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67-85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers.  相似文献   

4.
At a site with discontinuous permafrost in Fairbanks, Alaska, releases of trichloroethene (TCE), an industrial solvent, have caused contamination of the groundwater. The objective of this study was to investigate the relationship between the migration pathway of the TCE groundwater plume and the distribution of the discontinuous permafrost at the site. The TCE plume configuration is substantially different than what regional hydrology trends would predict. Using GIS, we conducted a geostatistical analysis of field data collected during soil-boring installations and groundwater monitoring well sampling. With the analysis results, we constructed maps of the permafrost-table elevation (top of permafrost) and of the groundwater gradients and TCE concentrations from multiyear groundwater sampling events. The plume concentrations and groundwater gradients were overlain on the permafrost map to correlate permafrost locations with groundwater movement and the spatial distribution of TCE moving with groundwater. Correlation of the overlay maps revealed converging and diverging groundwater flow in response to the permafrost-table distribution, the absence of groundwater contamination in areas with a high permafrost-table elevation, and channeling of contaminants and water between areas of permafrost. In addition, we measured groundwater elevations in nested wells to quantify vertical gradients affecting TCE migration. At one set of nested wells down gradient from an area of permafrost we measured an upward vertical gradient indicating recharge of groundwater from the subpermafrost region of the aquifer causing dilution of the plume. The study indicates that the variable distribution of the permafrost is affecting the way groundwater and TCE move through the aquifer. Consequently, changes to the permafrost configuration due to thawing would likely affect both groundwater movement and TCE migration, and areas that were contaminant-free may become susceptible to contamination.  相似文献   

5.
Simulating the fate and transport of TCE from groundwater to indoor air   总被引:1,自引:0,他引:1  
This work provides an exploratory analysis on the relative importance of various factors controlling the fate and transport of volatile organic contaminants (in this case, TCE) from a DNAPL source zone located below the water table and into the indoor air. The analysis is conducted using the multi-phase compositional model CompFlow Bio, with the base scenario problem geometry reminiscent of a field experiment conducted by Rivett [Rivett, M.O., (1995), Soil–gas signatures from volatile chlorinated solvents: Borden field experiments. Groundwater, 33(1), 84–98.] at the Borden aquifer where groundwater was observed to transport a contaminant plume a substantial distance without vertical mass transport of the contaminant across the capillary fringe and into the vadose zone. Results for the base scenario model indicate that the structure of the permeability field was largely responsible for deflecting the groundwater plume upward towards the capillary fringe, permitting aqueous phase diffusion to transport the TCE into the vadose zone. Alternative permeability realizations, generated as part of a Monte Carlo simulation process, at times deflected the groundwater plume downwards causing the extended thickness of the saturated zone to insulate the vadose zone from exposure to the TCE by upward diffusive transport. Comparison of attenuation coefficients calculated using the CompFlow Bio and Johnson and Ettinger [Johnson, P.C. and Ettinger, R.A., (1991), Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25, 1445–1452.] heuristic model exhibited fortuitous agreement for the base scenario problem geometry, with this agreement diverging for the alternative permeability realizations as well as when parameters such as the foundation slab fracture aperture, the indoor air pressure drop, the capillary fringe thickness, and the infiltration rate were varied over typical ranges.  相似文献   

6.
Toluene dioxygenase (tod) is a multicomponent enzyme system in Pseudomonas putida F1. Tod can mediate the degradation of Trichloroethylene (TCE), a widespread pollutant. In this study, we try to explore the TCE-regulated tod expression by using real-time qRT-PCR. The minimal culture media were supplemented with glucose, toluene, or a mixture of glucose/toluene respectively as carbon and energy sources. The TCE was injected into each medium after a 12-hour incubation period. The TCE injection severely affected bacterial growth when cultured with toluene or toluene/glucose mixtures. The cell density dropped 61 % for bacteria growing in toluene and 36 % for bacteria in the glucose/toluene mixture after TCE injection, but the TCE treatment had little effect on bacteria supplied with glucose alone. The decrease in cell number was caused by the cytotoxicity of the TCE metabolized by tod. The results from the real-time qRT-PCR revealed that TCE was capable of inducing tod expression in a toluene-dependent manner and that the tod expression level increased 50 times in toluene and 3 times in the toluene/glucose mixture after 6 hours of TCE treatment. Furthermore, validation of the rpoD gene as a reference gene for P. putida F1 was performed in this study, providing a valuable foundation for future studies to use real-time qRT-PCR in the analysis of the P. putida F1 strain.  相似文献   

7.

This work demonstrates the impact of hydroxylamine hydrochloride (HAH) addition on enhancing the degradation of trichloroethene (TCE) by the citric acid (CA)-chelated Fe(II)-catalyzed percarbonate (SPC) system. The results of a series of batch-reactor experiments show that TCE removal with HAH addition was increased from approximately 57 to 79% for a CA concentration of 0.1 mM and from 89 to 99.6% for a 0.5 mM concentration. Free-radical probe tests elucidated the existence of hydroxyl radical (HO) and superoxide anion radical (O2 •-) in both CA/Fe(II)/SPC and HAH/CA/Fe(II)/SPC systems. However, higher removal rates of radical probe compounds were observed in the HAH/CA/Fe(II)/SPC system, indicating that HAH addition enhanced the generation of both free radicals. In addition, increased contribution of O2 •- in the HAH/CA/Fe(II)/SPC system compared to the CA/Fe(II)/SPC system was verified by free-radical scavengers tests. Complete TCE dechlorination was confirmed based on the total mass balance of the released Cl species. Lower concentrations of formic acid were produced in the later stages of the reaction for the HAH/CA/Fe(II)/SPC system, suggesting that HAH addition favors complete TCE mineralization. Studies of the impact of selected groundwater matrix constituents indicate that TCE removal in the HAH/CA/Fe(II)/SPC system is slightly affected by initial solution pH, with higher removal rates under acidic and near neutral conditions. Although HCO3 was observed to have an adverse impact on TCE removal for the HAH/CA/Fe(II)/SPC system, the addition of HAH reduced its inhibitory effect compared to the CA/Fe(II)/SPC system. Finally, TCE removal in actual groundwater was much significant with the addition of HAH to the CA/Fe(II)/SPC system. The study results indicate that HAH amendment has potential to enhance effective remediation of TCE-contaminated groundwater.

  相似文献   

8.
三氯乙烯(trichloroethylene,TCE)是土壤和地下水中广泛存在的有机污染物,好氧生物降解因可将污染物彻底转化成无毒的终产物,一直受到广泛关注,但是TCE好氧降解需要共代谢底物。首次提出以汽油为底物,选取真养产碱杆菌作为活性降解菌株,对地下水中三氯乙烯的好氧共代谢降解进行了初步研究。分别优化了共代谢底物、底物与TCE浓度比、培养基、pH值、盐度、溶解氧等条件,确定了最佳降解条件。当水中TCE的浓度为1 mg/L时,通过对体系预曝氧气,调节汽油浓度为10 mg/L,pH值为5,降解24 h,TCE的降解率可达66.8%。为修复同时被汽油和TCE污染的场地提供了一个新的研究方向。  相似文献   

9.

Background, aim, and scope  

Ferro-cyanide is one of the commonly found species at cyanide-contaminated soils and groundwater. Unlike botanical metabolism of KCN via the β-cyanoalanine pathway, processes involved in the plant-mediated assimilation of ferro-cyanide are still unclear. The objective of this study was to investigate a possible mechanism involved in uptake and assimilation of ferro-cyanide by plants.  相似文献   

10.
Groundwater and contaminant fluxes were measured, using the passive flux meter (PFM) technique, in wells along a longitudinal transect passing approximately through the centerline of a trichloroethylene (TCE) plume at a former manufacturing plant located in the Midwestern US. Two distinct zones of hydraulic conductivity were identified from the measured groundwater fluxes; a 6-m-thick upper zone ( approximately 7 m to 13 m below the ground surface or bgs) with a geometric mean Darcy flux (q(0)) of 2 cm/day, and a lower zone ( approximately 13 m to 16.5m bgs) with a q(0) approximately 15 cm/day; this important hydrogeologic feature significantly impacts any remediation technology used at the site. The flux-averaged TCE concentrations estimated from the PFM results compared well with existing groundwater monitoring data. It was estimated that at least 800 kg of TCE was present in the source zone. The TCE mass discharge across the source control plane (85 m x 38 m) was used to estimate the "source strength" ( approximately 365 g/day), while mass discharges across multiple down-gradient control planes were used to estimate the plume-averaged, TCE degradation rate constant (0.52 year(-1)). This is close to the rate estimated using the conventional centerline approach (0.78 year(-1)). The mass discharge approach provides a more robust and representative estimate than the centerline approach since the latter uses only data from wells along the plume centerline while the former uses all wells in the plume.  相似文献   

11.

Purpose  

The aim of this work was to investigate the possibility of using several bush and arboreal plant species, usually present as ornamental plants in street and parks, as environmental indicators of pollution. This is a research paper that evaluates the real possibility of using a fast and low-cost procedure to evaluate the pollution degree through data obtained from plant species growing within an urban environment.  相似文献   

12.

Background, aim, and scope  

In this study, a suite of sublethal stress biomarkers were analyzed in juveniles of the sentinel species, the Pacific oyster Crassostrea gigas, with a view to using them as pollution monitoring tools. The aim of this work was (1) to study baseline seasonal variations of biomarkers in different body compartments of C. gigas in the reference site and, after selecting biomarkers presenting no seasonal variations, (2) to compare responses of these biomarkers between contaminated and reference sites.  相似文献   

13.

Introduction  

Five liver samples of two different ray species (Gymnura altavela and Zapteryx brevirostris) off the coast of Rio de Janeiro, Brazil, were analyzed for their pollution with anthropogenic and naturally occurring organohalogen compounds.  相似文献   

14.
A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes.  相似文献   

15.
Data from long-term groundwater sampling, limited coring, and associated studies are synthesised to assess the variability and intrinsic remediation/natural attenuation of a dissolved hydrocarbon plume in sulphate-rich anaerobic groundwater. Fine vertical scale (0.25- and 0.5-m depth intervals) and horizontal plume-scale (>400 m) characteristics of the plume were mapped over a 5-year period from 1991 to 1996. The plume of dissolved BTEX (benzene, toluene, ethylbenzene, xylene) and other organic compounds originated from leakage of gasoline from a subsurface fuel storage tank. The plume was up to 420 m long, less than 50 m wide and 3 m thick. In the first few years of monitoring, BTEX concentrations near the point of leakage were in approximate equilibrium with non-aqueous phase liquid (NAPL) gasoline. NAPL composition of core material and long-term trends in ratios of BTEX concentrations in groundwater indicated significant depletion (water washing, volatilisation and possibly biodegradation) of benzene from residual NAPL after 1992. Large fluctuations in BTEX concentrations in individual boreholes were shown to be largely attributable to seasonal groundwater flow variations. A combination of temporal and spatial groundwater quality data was required to adequately assess the stationarity of plumes, so as to allow inference of intrinsic remediation. Contoured concentration data for the period 1991 to 1996 indicated that plumes of toluene and o-xylene were, at best, only partially steady state (pseudo-steady state) due to seasonal groundwater flow changes. From this analysis, it was inferred that significant remediation by natural biodegradation was occurring for BTEX component plumes such as toluene and o-xylene, but provided no conclusive evidence of benzene biodegradation. Issues associated with field quantification of intrinsic remediation from groundwater sampling are highlighted. Preferential intrinsic biodegradation of selected organic compounds within the BTEX plume was shown to be occurring, in parallel with sulphate reduction and bicarbonate production. Ratios of average hydrocarbon concentrations to benzene for the period 1991 to 1992 were used to estimate degradation rates (half-lives) at various distances along the plume. The estimates varied with distance, the narrowest range being, for toluene, 110 to 260 days. These estimates were comparable to rates determined previously from an in situ tracer test and from plume-scale modelling.  相似文献   

16.
Subsurface contamination by trichloroethene (TCE) was detected at a Michigan National Priorities List (NPL) site in 1982. The TCE plume resulted from the disposal of spent solvent and other chemicals at an industrial facility located in the eastern shore of Lake Michigan. TCE degradation products of three dichloroethene (DCE) isomers, vinyl chloride (VC) and ethene were present. The plume was depleted of oxygen and methanogenic at certain depths. Transects of the plume were sampled by slotted auger borings the year after the TCE plume was first discovered. Water samples were also taken from lake sediments to a depth of 12 m about 100 m offshore. Later samples were taken along the shoreline of the lake with a hand-driven probe. Later in 1998 water was taken from sediments about 3-m from the shoreline. The average concentration of each chemical and net apparent base coefficient between appropriate pairs of transects between the lower site and lakeshore were calculated. Loss rates were then calculated from an analytical solution of the two-dimensional advective-dispersive-reactive transport equation. Net apparent rate coefficients and a set of coupled reaction rate equations were used to extract the apparent loss coefficients. This study showed the field evidence for natural attenuation of TCE.  相似文献   

17.

Background, aim and scope  

Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation and thus not eliminated by classical wastewater treatments. In the development of a phytotreatment to remove sulphonated aromatic compounds from dye and textile industrial effluents, it has been shown that rhubarb (Rheum rabarbarum) and common sorrel (Rumex acetosa) are the most efficient plants. Both species, producing natural anthraquinones, not only accumulate, but also transform these xenobiotic chemicals. Even if the precise biochemical mechanisms involved in the detoxification of sulphonated anthraquinones are not yet understood, they probably have cross talks with secondary metabolism, redox processes and plant energy metabolism. The aim of the present study was to investigate the possible roles of cytochrome P450 monooxygenases and peroxidases in the detoxification of several sulphonated anthraquinones.  相似文献   

18.

Purpose

Psychoactive compounds??meprobamate, pyrithyldione, primidone, and its metabolites, phenobarbital, and phenylethylmalonamide??were detected in groundwater within the catchment area of a drinking water treatment plant located downgradient of a former sewage farm in Berlin, Germany. The aim of this study was to investigate the distribution of the psychoactive compounds in anoxic groundwater and to assess the risk of drinking water contamination. Groundwater age was determined to achieve a better understanding of present hydrogeological conditions.

Methods

A large number of observation and production wells were sampled. Samples were analyzed using solid-phase extraction and ultrahigh-performance liquid chromatography?Ctandem mass spectrometry. Groundwater age was estimated using the helium?Ctritium (3He?C3H) dating method.

Results

Concentrations of psychoactive compounds up to 1???g/L were encountered in the contamination plume. Generally, concentrations of phenobarbital and meprobamate were the highest. Elevated concentrations of the analytes were also detected in raw water from abstraction wells located approximately 2.5?km downgradient of the former sewage farm. Concentrations in the final drinking water were below the limit of quantification owing to dilution. The age of shallow groundwater samples ranged from years to a decade, whereas groundwater was up to four decades old at 40?m below ground. Concentrations of the compounds increased with groundwater age.

Conclusions

Elevated concentrations of psychoactive drugs indicate a strong persistence of these compounds in the environment under anoxic aquifer conditions. Results suggest that the heritage of sewage irrigation will affect raw water quality in the area for decades. Therefore, further monitoring of raw and final drinking water is recommended to ensure that contaminant concentrations remain below the health-based precautionary value.  相似文献   

19.
This paper describes one of the first well-documented field examples of natural attenuation of trichloroethylene (TCE) in groundwater in a fractured shale bedrock. The study was carried out adjacent to a former waste burial site in Waste Area Grouping 5 (WAG5) on the Oak Ridge Reservation, Oak Ridge, TN. A contaminant plume containing TCE and its daughter products were detected downgradient from the buried waste pits, with most of the contamination occurring in the upper 6 m of the bedrock. The monitoring well array consists of a 35-m-long transect of multilevel sampling wells, situated along a line between the waste pits and a seep which discharges into a small stream. Concentrations of volatile organic carbons (VOCs) were highest in the waste trenches and decreased with distance downgradient towards the seep. Sampling wells indicated the presence of overlapping plumes of TCE, cis-dichloroethylene (cDCE), vinyl chloride (VC), ethylene, ethane, and methane, with the daughter products extending further downgradient than the parent (TCE). This type of distribution suggests anaerobic biodegradation. Measurements of redox potential at the site indicated that iron-reduction, sulfate reduction, and potentially methanogensis were occurring and are conducive to dechlorination of TCE. Bacteria enrichment of groundwater samples revealed the presence of methanotrophs, methanogens, iron-reducing bacteria and sulfate-reducing bacteria, all of which have previously been implicated in anaerobic biodegradation of TCE. 16S rDNA sequence from DNA extracted from two wells were similar to sequences of organisms previously implicated in the anaerobic biodegradation of chlorinated solvents. The combined data strongly suggest that anaerobic biodegradation of the highly chlorinated compounds is occurring. Aerobic biodegradation may also be occurring in oxygenated zones, including near a seep where groundwater exits the site, or in the upper bedrock during seasonal fluctuations in water table elevation and oxygen levels.  相似文献   

20.

Purpose  

Polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and PCB congeners accumulation profile were measured in the liver of two torpedinid species (Torpedo nobiliana and Torpedo marmorata) from the Mediterranean Sea (Adriatic Sea) in order to investigate the relative toxicological impact of these highly toxic PCBs in the organisms in question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号