首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m~2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m~2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.  相似文献   

2.
A lab-scale intermittently aerated sequencing batch reactor(IASBR)was applied to treat anaerobically digested swine wastewater(ADSW)to explore the removal characteristics of veterinary antibiotics.The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand(COD)volumetric loadings,solid retention times(SRT)and ratios of COD to total nitrogen(TN)or COD/TN.Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics.Mass balance analysis revealed that greater than 60%of antibiotics in the influent were biodegraded in the IASBR,whereas averagely 24%were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium.Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand(COD)volumetric loadings,which could achieve up to 85.1%±1.4%at 0.17±0.041 kg COD/m-3/day,while dropped to 75.9%±1.3%and 49.3%±12.1%when COD volumetric loading increased to 0.65±0.032 and1.07±0.073 kg COD/m-3/day,respectively.Tetracyclines,the dominant antibiotics in ADSW,were removed by 87.9%in total at the lowest COD loading,of which 30.4%were contributed by sludge sorption and 57.5%by biodegradation,respectively.In contrast,sulfonamides were removed about 96.2%,almost by biodegradation.Long SRT seemed to have little obvious impact on antibiotics removal,while a shorter SRT of 30–40 day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge.Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work.  相似文献   

3.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

4.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

5.
水体中甲基汞光化学降解特征研究   总被引:5,自引:3,他引:2  
孙荣国  毛雯  马明  张成  王定勇 《环境科学》2012,33(12):4329-4334
为探究水体中甲基汞(MMHg)的光化学行为,采用室内模拟实验,以不同波长紫外灯及室内可见光为光源,探讨紫外光波长、光强度等因素对MMHg光降解的影响,并根据生成物Hg0的量变化分析MMHg光降解反应历程.研究表明,MMHg光降解最终产物中含有Hg0,且光照条件对MMHg光降解速率、Hg0的产量有影响.在反应器暴露于紫外光条件下时,MMHg光降解速率随紫外光波长的变短而增加,随紫外光强度的提高而增加,且MMHg光降解呈一级动力学反应,速率常数分别为KUVA 0.403~0.562 h-1、KUVB 0.961 h-1、KUVC 1.221 h-1和KVL+UVA+UVB 1.346 h-1;Hg0释放通量为0.166~0.392 ng·min-1.当反应器暴露于可见光条件下时,反应器内MMHg浓度下降速率较慢,KVL0.061 h-1;Hg0释放通量为0.008 ng·min-1.而在黑暗条件下没有发现反应器内MMHg浓度下降,无Hg0生成.可见紫外光是导致MMHg降解的主要原因,光波波长与强度对MMHg的环境地球化学行为有重要影响.  相似文献   

6.
Ozone (O3) concentration and flux (Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3 exposure-response models. The results showed that: (1) During the growing season (7 March to 7 June, 2012), the minimum (16.1 ppbV) and maximum (53.3 ppbV) mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppbV, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature. (2) The mean diurnal variation of deposition velocity (Vd) can be divided into four phases, and the maximum occurred at noon (12:00). Averaged Vd during daytime (6:00–18:00) and nighttime (18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured Vd was about 1.5 cm/sec. The magnitude of Vd was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity. (3) The maximum mean Fo appeared at 14:00, and the maximum measured Fo was − 33.5 nmol/(m2·sec). Averaged Fo during daytime and nighttime were − 6.9 and − 1.5 nmol/(m2·sec), respectively. (4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average (5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions.  相似文献   

7.
Surface water methane (CH4) and nitrous oxide (N2O) concentrations and fluxes were investigated in two subtropical coastal embayments (Bramble Bay and Deception Bay, which are part of the greater Moreton Bay, Australia). Measurements were done at 23 stations in seven campaigns covering different seasons during 2010–2012. Water–air fluxes were estimated using the Thin Boundary Layer approach with a combination of wind and currents-based models for the estimation of the gas transfer velocities. The two bays were strong sources of both CH4 and N2O with no significant differences in the degree of saturation of both gases between them during all measurement campaigns. Both CH4 and N2O concentrations had strong temporal but minimal spatial variability in both bays. During the seven seasons, CH4 varied between 500% and 4000% saturation while N2O varied between 128 and 255% in the two bays. Average seasonal CH4 fluxes for the two bays varied between 0.5 ± 0.2 and 6.0 ± 1.5 mg CH4/(m2·day) while N2O varied between 0.4 ± 0.1 and 1.6 ± 0.6 mg N2O/(m2·day). Weighted emissions (t CO2-e) were 63%–90% N2O dominated implying that a reduction in N2O inputs and/or nitrogen availability in the bays may significantly reduce the bays' greenhouse gas (GHG) budget. Emissions data for tropical and subtropical systems is still scarce. This work found subtropical bays to be significant aquatic sources of both CH4 and N2O and puts the estimated fluxes into the global context with measurements done from other climatic regions.  相似文献   

8.
Eighteen carbonyl species in C1–C10 were measured in the dining areas, kitchens and exhaust streams of six different restaurant types in Kaohsiung, southern Taiwan. Measured results in the dining areas show that Japanese barbecue (45.06 ppb) had the highest total carbonyl concentrations (sum of 18 compounds), followed by Chinese hotpot (38.21 ppb), Chinese stir-frying (8.99 ppb), Western fast-food (8.22 ppb), Chinese–Western mixed style (7.38 ppb), and Chinese buffet (3.08 ppb), due to their different arrangements for dining and cooking spaces and different cooking methods. On average, low carbon-containing species (C1–C4), e.g., formaldehyde, acetaldehyde, acetone and butyraldehyde were dominant and contributed 55.01%–94.52% of total carbonyls in the dining areas of all restaurants. Meanwhile, Chinese–Western mixed restaurants (45.48 ppb) had high total carbonyl concentrations in kitchens mainly because of its small kitchen and poor ventilation. However, high carbon-containing species (C5–C10) such as hexaldehyde, heptaldehyde and nonanaldehyde (16.62%–77.00% of total carbonyls) contributed comparatively with low carbon-containing compounds (23.01%–83.39% of total carbonyls) in kitchens. Furthermore, Chinese stir-frying (132.10 ppb), Japanese barbecue (125.62 ppb), Western fast-food (122.67 ppb), and Chinese buffet (119.96 ppb) were the four restaurant types with the highest total carbonyl concentrations in exhaust streams, indicating that stir-frying and grilling are inclined to produce polluted gases. Health risk assessments indicate that Chinese hotpot and Japanese barbecue exceeded the limits of cancer risk (10− 6) and hazard index (= 1), mainly due to high concentrations of formaldehyde. The other four restaurants were below both limits.  相似文献   

9.
Removal kinetics of phosphorus through use of basic oxygen furnace slag (BOF-slag) was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial pH, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant (kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial pH, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage. A linear dependence of kobs on total removed phosphorus (TRP) was established with kobs = (3.51 ± 0.11) × 10− 4 × TRP. Finally, it was suggested that the Langmuir–Rideal (L–R) or Langmuir–Hinshelwood (L–H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.  相似文献   

10.
Removal kinetics of phosphorus through use of basic oxygen furnace slag(BOF-slag)was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial p H, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant(kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial p H, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage.A linear dependence of kobson total removed phosphorus(TRP) was established with kobs=(3.51 ± 0.11) × 10- 4× TRP. Finally, it was suggested that the Langmuir–Rideal(L–R)or Langmuir–Hinshelwood(L–H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.  相似文献   

11.
Size-resolved aerosol samples were collected by MOUDI in four seasons in 2007 in Beijing. The PM10 and PM1.8 mass concentrations were 166.0 ± 120.5 and 91.6 ± 69.7 μg/m3, respectively, throughout the measurement, with seasonal variation: nearly two times higher in autumn than in summer and spring. Serious fine particle pollution occurred in winter with the PM1.8/PM10 ratio of 0.63, which was higher than other seasons. The size distribution of PM showed obvious seasonal and diurnal variation, with a smaller fine mode peak in spring and in the daytime. OM (organic matter = 1.6 × OC (organic carbon)) and SIA (secondary inorganic aerosol) were major components of fine particles, while OM, SIA and Ca2 + were major components in coarse particles. Moreover, secondary components, mainly SOA (secondary organic aerosol) and SIA, accounted for 46%–96% of each size bin in fine particles, which meant that secondary pollution existed all year. Sulfates and nitrates, primarily in the form of (NH4)2SO4, NH4NO3, CaSO4, Na2SO4 and K2SO4, calculated by the model ISORROPIA II, were major components of the solid phase in fine particles. The PM concentration and size distribution were similar in the four seasons on non-haze days, while large differences occurred on haze days, which indicated seasonal variation of PM concentration and size distribution were dominated by haze days. The SIA concentrations and fractions of nearly all size bins were higher on haze days than on non-haze days, which was attributed to heterogeneous aqueous reactions on haze days in the four seasons.  相似文献   

12.
TiO_2 nanotube(Ti NT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy(FE-SEM) and X-ray diffraction(XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na_2SO_4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10~(-2) min~(-1) at pH 10.7 and a faster degradation rate of 6.34 × 10~(-2) min~(-1)was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO_2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.  相似文献   

13.
To increase the knowledge on the particulate matter of a wetland in Beijing, an experimental study on the concentration and composition of PM10 and PM2.5 was implemented in Beijing Olympic Forest Park from 2013 to 2014. This study analyzed the meteorological factors and deposition fluxes at different heights and in different periods in the wetlands. The results showed that the mean mass concentrations of PM10 and PM2.5 were the highest at 06:00–09:00 and the lowest at 15:00–18:00. And the annual concentration of PM10 and PM2.5 in the wetland followed the order of dry period (winter) > normal water period (spring and autumn) > wet period (summer), with the concentration in the dry period significantly higher than that in the normal water and wet periods. The chemical composition of PM2.5 in the wetlands included NH4+, K+, Na+, Mg2 +, SO42 −, NO3, and Cl, which respectively accounted for 12.7%, 1.0%, 0.8%, 0.7%, 46.6%, 33.2%, and 5.1% of the average annual composition. The concentration of PM10 and PM2.5 in the wetlands had a significant positive correlation with relative humidity, a negative correlation with wind speed, and an insignificant negative correlation with temperature and radiation. The daily average dry deposition amount of PM10 in the different periods followed the order of dry period > normal water period > wet period, and the daily average dry deposition amount of PM2.5 in the different periods was dry period > wet period > normal water period.  相似文献   

14.
Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean CO_2flux in the DP was(0.75±0.12)mmol/(m~2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m~2·hr)(p0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO_2in winter.Mean CH_4and N_2O emissions were significantly higher in the DP compared to those in the UDP(CH_4=(0.66±0.31)vs.(0.07±0.06)mmol/(m~2·hr)and N_2O=(19.54±2.08)vs.(0.01±0.04)μmol/(m~2·hr))(p0.01),suggesting that drainage would also significantly enhance CH_4and N_2O emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p0.01),with values of739.18 and 26.46 mg CO_2-eq/(m~2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.  相似文献   

15.
Physiological changes in crop plants in response to the elevated tropospheric ozone (O3) may alter N and C cycles in soil. This may also affect the atmosphere-biosphere exchange of radiatively important greenhouse gases (GHGs), e.g. methane (CH4) and nitrous oxide (N2O) from soil. A study was carried out during July to November of 2007 and 2008 in the experimental farm of Indian Agricultural Research Institute, New Delhi to assess the effects of elevated tropospheric ozone on methane and nitrous oxide emissions from rice (Oryza sativa L.) soil. Rice crop was grown in open top chambers (OTC) under elevated ozone (EO), non-filtered air (NF), charcoal filtered air (CF) and ambient air (AA). Seasonal mean concentrations of O3 were 4.3 ± 0.9, 26.2 ± 1.9, 59.1 ± 4.2 and 27.5 ± 2.3 ppb during year 2007 and 5.9 ± 1.1, 37.2 ± 2.5, 69.7 ± 3.9 and 39.2 ± 1.8 ppb during year 2008 for treatments CF, NF, EO and AA, respectively. Cumulative seasonal CH4 emission reduced by 29.7% and 40.4% under the elevated ozone (EO) compared to the non-filtered air (NF), whereas the emission increased by 21.5% and 16.7% in the charcoal filtered air (CF) in 2007 and 2008, respectively. Cumulative seasonal emission of N2O ranged from 47.8 mg m−2 in elevated ozone to 54.6 mg m−2 in charcoal filtered air in 2007 and from 46.4 to 62.1 mg m−2 in 2008. Elevated ozone reduced grain yield by 11.3% and 12.4% in 2007 and 2008, respectively. Global warming potential (GWP) per unit of rice yield was the least under elevated ozone levels. Dissolved organic C content of soil was lowest under the elevated ozone treatment. Decrease in availability of substrate i.e., dissolved organic C under elevated ozone resulted in a decline in GHG emissions. Filtration of ozone from ambient air increased grain yield and growth parameters of rice and emission of GHGs.  相似文献   

16.
Nitrate-nitrogen(NO_3~--N) always accumulates in commercial recirculating aquaculture systems(RASs) with aerobic nitrification units. The ability to reduce NO_3~--N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen(DO)content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO_3~--N from RASs. The effect of dissolved oxygen(DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone(PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group(Group A, average DO concentration of 0.28 ± 0.05 mg/L), the low-oxygen treatment DO group(Group B, average DO concentration of 2.50 ± 0.24 mg/L) and the aerated treatment group(Group C, average DO concentration of 5.63 ± 0.57 mg/L). Feeding with 200 mg/L of NO_3~--N, the NO_3~--N removal rates were 1.53, 1.60 and 1.42 kg/m3PCL/day in Groups A, B and C, respectively. No significant difference in NO_3~--N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6 mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated.  相似文献   

17.
The rate constant for the gas-phase reaction of O_3 and Lewisite was studied in air using the smog chamber technique. The experiments were carried out under pseudo-first-order reaction conditions with [O_3] [Lewisite]. The observed rate constant of O_3 with Lewisite was(7.83 ± 0.38) × 10~(-19)cm~3/(molecule·sec) at 298 ± 2 K. Lewisite was discussed in terms of reactivity with O_3 and its relationship with the ionization potential. Our results show that the rate constant for the gas-phase reaction of O_3 with Lewisite is in line with the trend of the rate constants of O_3 with haloalkenes.  相似文献   

18.
An OH radical measurement instrument based on Fluorescence Assay by Gas Expansion(FAGE)has been developed in our laboratory.Ambient air is introduced into a low-pressure fluorescence cell through a pinhole aperture and irradiated by a dye laser at a high repetition rate of 8.5 k Hz.The OH radical is both excited and detected at 308 nm using A-X(0,0)band.To satisfy the high efficiency needs of fluorescence collection and detection,a 4-lens optical system and a self-designed gated photomultiplier(PMT)is used,and gating is actualized by switching the voltage applied on the PMT dynodes.A micro channel photomultiplier(MCP)is also prepared for fluorescence detection.Then the weak signal is accumulated by a photon counter in a specific timing.The OH radical excitation spectrum range in the wavelength of 307.82–308.2 nm is detected and the excited line for OH detection is determined to be Q_1(2)line.The calibration of the FAGE system is researched by using simultaneous photolysis of H_2O and O_2.The minimum detection limit of the instrument using gated PMT is determined to be 9.4×10~5molecules/cm~3,and the sensitivity is 9.5×10~(-7)cps/(OH·cm~(-3)),with a signal-to-noise ratio of 2 and an integration time of 60 sec,while OH detection limit and the detection sensitivity using MCP is calculated to be 1.6×10~5molecules/cm~3and 2.3×10~(-6)cps/(OH·cm~(-3)).The laboratory OH radical measurement is carried out and results show that the proposed system can be used for atmospheric OH radical measurement.  相似文献   

19.
In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%–35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%–47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+–N), 17% more nitrite nitrogen (NO2–N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3–N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent.  相似文献   

20.
Soil C sequestration in croplands is deemed to be one of the most promising greenhouse gas mitigation options for Japan's agriculture. In this context, changes in soil C stocks in northern Japan's arable farming area over the period of 1971-2010, specifically in the region's typical Andosol (volcanic ash-derived) and non-Andosol soils, were simulated using soil-type-specific versions of the Rothamsted carbon model (RothC). The models were then used to predict the effects, over the period of 2011-2050, of three potential management scenarios: (i) baseline: maintenance of present crop residue returns and green manure crops, as well as composted cattle manure C inputs (24-34 Mg ha−1 yr−1 applied on 3-55% of arable land according to crop), (ii) cattle manure: all arable fields receive 20 Mg ha−1 yr−1 of composted cattle manure, increased C inputs from crop residues and present C inputs from green manure are assumed, and (iii) minimum input: all above-ground crop residues removed, no green manure crop, no cattle manure applied. Above- and below-ground residue biomass C inputs contributed by 8 major crops, and oats employed as a green manure crop, were drawn from yield statistics recorded at the township level and crop-specific allometric relationships (e.g. ratio of above-ground residue biomass to harvested biomass on a dry weight basis). Estimated crop net primary production (NPP) ranged from 1.60 Mg C ha−1 yr−1 for adzuki bean to 8.75 Mg C ha−1 yr−1 for silage corn. For the whole region (143 × 103 ha), overall NPP was estimated at 952 ± 60 Gg C yr−1 (6.66 ± 0.42 Mg C ha−1 yr−1). Plant C inputs to the soil also varied widely amongst the crops, ranging from 0.50 Mg C ha−1 yr−1 for potato to 3.26 Mg C ha−1 yr−1 for winter wheat. Annual plant C inputs to the soil were estimated at 360 ± 45 Gg C yr−1 (2.52 ± 0.32 Mg C ha−1 yr−1), representing 38% of the cropland NPP. The RothC simulations suggest that the region's soil C stock (0-30 cm horizon), across all soils, has decreased from 13.96 Tg C (107.5 Mg C ha−1 yr−1) in 1970 to 12.46 Tg C (96.0 Mg C ha−1 yr−1) in 2010. For the baseline, cattle manure and minimum input scenarios, soil C stocks of 12.13, 13.27 and 9.82 Tg C, respectively, were projected for 2050. Over the period of 2011-2050, compared to the baseline scenario, soil C was sequestered (+0.219 Mg C ha−1 yr−1) by enhanced cattle manure application, but was lost (−0.445 Mg C ha−1 yr−1) under the minimum input scenario. The effect of variations of input data (monthly mean temperature, monthly precipitation, plant C inputs and cattle manure C inputs) on the uncertainty of model outputs for each scenario was assessed using a Monte Carlo approach. Taking into account the uncertainty (standard deviation as % of the mean) for the model's outputs for 2050 (5.1-6.1%), it is clear that the minimum input scenario would lead to a rapid decrease in soil C stocks for arable farmlands in northern Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号