首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   

2.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass.  相似文献   

3.
Regulatory mandates have increased demand for best management practices (BMPs) that will reduce nutrient loading on watersheds impaired by excess manure P and N. Export of manure P and N in turfgrass sod harvests is one BMP under consideration. This study quantified amounts and percentages of P and N removed in a sod harvest for different rates of manure and inorganic P and N. Six treatments comprised an unfertilized control, two manure rates with and without supplemental inorganic N, and inorganic P and N only. The treatments were applied to 'Tifway' bermudagrass (Cynodon dactylon L. x C. transvaalensis Burtt-Davey), '609' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and 'Reveille' bluegrass (Poa arachnifera Torr. x P. pratensis L.) under field conditions. Comparisons among treatments revealed small variations of P and N content in clippings and the plant component of sod, but large variations in the soil component of sod for each turf species. In addition, 2 to 10 times more P and 1.3 to 5 times more N was removed in soil than in plant components of sod for the two manure rates with and without added inorganic N. Percentages of applied P and N in harvested sod were similar for the two manure rates with and without added N for each species, but differed among turf species for each P (46 to 77%) and N (36 to 47%). The large amounts and percentages of manure P and N removed by sod harvest support the feasibility of this BMP in efforts to reduce nutrient loads on watersheds.  相似文献   

4.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

5.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   

6.
Phosphorus (P) loss from agricultural watersheds is generally greater in storm rather than base flow. Although fundamental to P-based risk assessment tools, few studies have quantified the effect of storm size on P loss. Thus, the loss of P as a function of flow type (base and storm flow) and size was quantified for a mixed-land use watershed (FD-36; 39.5 ha) from 1997 to 2006. Storm size was ranked by return period (<1, 1-3, 3-5, 5-10, and >10 yr), where increasing return period represents storms with greater peak and total flow. From 1997 to 2006, storm flow accounted for 32% of watershed discharge yet contributed 65% of dissolved reactive P (DP) (107 g ha(-1) yr(-1)) and 80% of total P (TP) exported (515 g ha(-1) yr(-1)). Of 248 storm flows during this period, 93% had a return period of <1 yr, contributing most of the 10-yr flow (6507 m(3) ha(-1); 63%) and export of DP (574 g ha(-1); 54%) and TP (2423 g ha(-1); 47%). Two 10-yr storms contributed 23% of P exported between 1997 and 2006. A significant increase in storm flow DP concentration with storm size (0.09-0.16 mg L(-1)) suggests that P release from soil and/or area of the watershed producing runoff increase with storm size. Thus, implementation of P-based Best Management Practice needs to consider what level of risk management is acceptable.  相似文献   

7.
Pollution of water resources by phosphorus (P) is a critical issue in regions with agricultural and urban development. In this study, we estimated P inputs from agricultural and urban sources in 24 catchments draining to the Central Valley in California and compared them with measured river P export to investigate hydrologic and anthropogenic factors affecting regional P retention and export. Using spatially explicit information on fertilizer use, livestock population, agricultural production, and human population, we calculated that net surface balances for anthropogenic P ranged from -12 to 648 kg P km yr in the early 2000s. Inorganic P fertilizer and manure P comprised the largest fraction of total input for all but two catchments. From 2000 to 2003, a median of 7% (range, -287 to 88%) of net annual anthropogenic P input was exported as total P (TP). Yields (kg P km yr) of dissolved inorganic P (DIP), dissolved organic P, particulate P, and TP were not significantly related to catchment-level, per area anthropogenic P input. However, there were significant relationships between mean annual P concentrations and P input from inorganic fertilizers and manure due to the concentration of agricultural land near catchment mouths and regional variation in runoff. Catchment-level P fertilizer and manure inputs explained 4 to 23% more variance in mean annual DIP and TP concentrations than percent of catchment area in agriculture. This study suggests that spatially explicit estimates of anthropogenic P input can help identify sources of multiple forms of P exported in rivers at management-relevant spatial scales.  相似文献   

8.
ABSTRACT: To quantify the effectiveness of best management practice (BMP) implementation on runoff, sediment, and nutrient yields from a watershed, the Nomini Creek watershed and water quality monitoring project was initiated in 1985, in Westmoreland County, Virginia. The changes in nonpoint source (NPS) loadings resulting from BMPs were evaluated by comparing selected parameters from data series obtained before, during, and after periods of BMP implementation. The results indicated that the watershed-averaged curve number, sediment, and nutrient (N and P) concentrations were reduced by approximately 5, 20, and 40 percent, respectively, due to BMP implementation. The nutrient yield model developed by Frere et al. (1980) was applied to the water quality parameters from 175 storms, but it failed to adequately describe the observed phenomena. Seasonal changes in nutrient availability factors were not consistent with field conditions, nor were they significantly different in the pm- and post-BMP periods. An extended period of monitoring, with intensive BMP implementation over a larger portion of the watershed, is required to identify BMP effectiveness.  相似文献   

9.
ABSTRACT: The effectiveness of urban Best Management Practices (BMPs) in achieving the No-Net-Increase Policy (NNTP), a policy designed to limit nonpoint nitrogen loading to Long Island Sound (US), is analyzed. A unit loading model is used to simulate annual nitrogen exported from the Norwalk River watershed (Connecticut) under current and future conditions. A probabilistic uncertainty analysis is used to incorporate uncertainty in nitrogen export coefficients and BMP nitrogen removal effectiveness. The inclusion of uncertainty in BMP effectiveness and nitrogen export coefficients implies that additional BMPs, or BMPs with a greater effectiveness in nitrogen removal, will be required to achieve the NNIP. Even though including uncertainty leads to an increase in BMP implementation rates or BMP effectiveness, this type of analysis provides the decision maker with a more realistic assessment of the likelihood that implementing BMPs as a management strategy will be successful. Monte Carlo simulation results indicate that applying BMPs to new urban developments alone will not be sufficient to achieve the NNIP since BMPs are not 100 percent effective in removing the increase in nitrogen caused by urbanization. BMPs must also be applied to selected existing urban areas. BMPs with a nitrogen removal effectiveness of 40–60 percent, probably the highest level of removal that can be expected over an entire watershed, must be applied to at least 75 percent of the existing urban area to achieve the NNIP This high rate of application is not likely to be achieved in urbanized watersheds in the LIS watershed; therefore, additional point source control will be necessary to achieve the NNIP  相似文献   

10.
There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.  相似文献   

11.
ABSTRACT: Driven by increasing concerns about bacterial pollution from agricultural sources, states such as Virginia have initiated cost sharing programs that encourage the use of animal waste best management practices (BMPs) to control this pollution. Although a few studies have shown that waste management BMPs are effective at the field scale, their effectiveness at the watershed scale and over the long term is unknown. The focus of this research was to evaluate the effectiveness of BMPs in reducing bacterial pollution at the watershed scale and over the long term. To accomplish this goal, a 1,163 ha watershed located in the Piedmont region of Virginia was monitored over a ten‐year period. Fecal coliforms (FC) and fecal streptococci (FS) were measured as indicators of bacterial pollution. A pre‐BMP versus post‐BMP design was adopted. Major BMPs implemented were manure storage facilities, stream fencing, water troughs, and nutrient management. Seasonal Kendall trend analysis revealed a significant decreasing trend during the post‐BMP period for FC concentrations at the watershed outlet, but not at the subwatershed level. Implementation of BMPs also resulted in a significant reduction in the geometric mean of FS concentrations. FC concentrations in streamflow at the watershed outlet exceeded the Virginia primary standard 86 and 74 percent of the time during pre‐BMP and post‐BMP periods, respectively. Corresponding exceedances for the secondary standard were 50 and 41 percent. Violations decreased only slightly during the post‐BMP period. The findings of this study suggest that although BMP implementation can be expected to accomplish some improvement in water quality, BMP implementation alone may not ensure compliance with current water quality standards.  相似文献   

12.
Manure management plans require knowing the amount of manure produced, collected, and available for land-spreading. Whereas much information is available to calculate manure production, little is known about the types and amounts of manure actually collected on typical dairy farms. This study of 54 representative Wisconsin dairy farms showed significant regional, housing, and herd size differences in collection of manure from lactating cows (Bos taurus), dry cows, and heifers. Significantly (P < 0.05) less manure is collected in the hilly southwest (56% of total annual herd production) than in the undulating south central (72%) or the flat northeast (68%) regions. Collection of lactating cow manure is significantly (P < 0.05) lower from stanchion (66% of total annual production) than free-stall (89%) housing, and significant (P < 0.05) positive relationships were found between the number of lactating cows a farm keeps and the percentage manure collected. Average annual manure N (range of 116-846 kg N ha(-1)) and P (range of 24-158 kg P ha(-1)) loading rates in areas where manure goes uncollected was highest in unvegetated barnyards followed by vegetated and partially vegetated outside areas. Once uncollected manure was accounted for, average annual loading rates on cereal cropland ranged from 128 to 337 kg ha(-1) of manure N, and from 45 to 139 kg ha(-1) of manure P. Compared with adjacent cropland, the accumulation of uncollected manure has vastly increased soil test P, K, and organic matter levels in outside areas. Manure management on Wisconsin dairy farms with small to medium herds might require assistance in managing manure in outside confinement areas to reduce the risk of impairing surface and ground water quality.  相似文献   

13.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

14.
Coal combustion by-products (CCB) include fly ash and bottom ash and are generated nationally at rates of 10(8) Mg yr(-1). Land applications of CCB have improved physicochemical properties of soil, yet inherent bulkiness and trace metal content of CCB often limit their use. Likewise, utilization of biosolids and manure as fertilizer can be problematic due to unfavorable nutrient ratios. A 2-yr field study evaluated environmental and technical parameters associated with CCB-organic waste utilization as growth media in turfgrass sod production. Experimental growth media formulated with CCB and organic waste and a sand-compost control mixture were uniformly spread at rates from 200 to 400 m3 ha(-1) and sprigged with hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy]. Leaf clippings were collected and analyzed for total elemental content each year. In Year 2, growth media samples were collected during establishment 47 and 84 days after planting (DAP) and viable Escherichia coli organisms were quantified. At harvest (99 or 114 DAP), sod biomass and physicochemical properties of the growth media were measured. During sod propagation, micronutrient and metal content in leaf clippings varied by growth media and time. After 47 d of typical sod field management, viable E. coli pathogens were detected in only one biosolids-amended plot. No viable E. coli were measured at 84 DAP. In both years, sod biomass was greatest in media containing biosolids and fly ash. Following installation of sod, evaluations did not reveal differences by media type or application volume. Using CCB-organic waste mixes at the rates described herein is a rapid and environmentally safe method of bermudagrass sod production.  相似文献   

15.
Received for publication December 22, 2004. Research was initiated to study the interaction between soil amendments (lime, gypsum, and ferrous sulfate) and dissolved molybdate reactive phosphorus [RP(<0.45)] losses from manure applications from concentrated runoff flow through a sod surface. Four run-over boxes (2.2-m2 surface area) were prepared for each treatment with a bermudagrass [Cynodon dactylon (L.) Pers.] sod surface (using sod blocks) and composted dairy manure was surface-applied at rates of 0, 4.5, 9, or 13.5 Mg ha-1. The three soil amendments were then applied to the boxes. Two 30-min runoff events were conducted and runoff water was collected at 10-min intervals and analyzed for RP(<0.45). Results indicated that the addition of ferrous sulfate was very effective at reducing the level of RP(<0.45). in runoff water, reducing RP(<0.45) from 1.3 mg L(-1) for the highest compost rate with no amendment to 0.2 mg L(-1) for the ferrous sulfate in the first 10 min of runoff. Lime and gypsum showed a small impact on reducing RP(<0.45), with a reduction in the first 10 min to 0.9 and 0.8 mg L(-1), respectively. The ferrous sulfate reduced the RP(<0.45) in the tank at the end of the first runoff event by 66.3% compared with no amendment. In the second runoff event, the ferrous sulfate was very effective at reducing RP(<0.45) in runoff, with no significant differences in RP(<0.45) with application of 13.5 Mg ha(-1) compost compared with no manure application. The results indicate that the addition of ferrous sulfate may greatly reduce RP(<0.45) losses in runoff and has considerable potential to be used on pasture, turfgrass, and filter strips to reduce the initial RP(<0.45) losses from manure application to the environment.  相似文献   

16.
Although water quality problems associated with agricultural nonpoint source (NPS) pollution have prompted the rapid and widespread adoption of a variety of so called "best management practices" (BMPs), there have been few realistic efforts to assess their combined effectiveness in reducing NPS pollution. This study used the Variable Source Loading Function (VSLF) model, a distributed watershed model, to simulate phosphorus (P) loading from an upstate New York dairy farm before and after the implementation of a suite of BMPs. With minimal calibration, the model calculates the dissolved P (DP) losses from impervious surfaces (e.g., barnyards), the plant/soil complex, field-applied manure, and loads associated with baseflow conditions. The simulated DP loads agreed well with measured loads for both the pre-BMP and post-BMP periods. More importantly, results showed that BMPs reduced DP loads by 35%, which is over half of the expected reduction if all manure was removed from the watershed, i.e., approximately 50% reduction. The model results indicate that had no BMPs been installed DP loads would be approximately 37% greater than observed at the watershed outlet. The most effective BMPs were those that disassociated pollutant loading areas from areas prone to generating runoff, i.e., hydrologically sensitive areas. By contrast, attempts to reduce P content in manure were somewhat less effective. This study demonstrates that a combination of distributed, mechanistic modeling and long-term monitoring provides better insights into the effectiveness of water quality protection efforts than either individually.  相似文献   

17.
Long-term water quality records for assessing natural variability, impact of management, and that guide regulatory processes to safeguard water resources are rare for California oak woodland rangelands. This study presents a 20-yr record (1981-2000) of nitrate-nitrogen (NO(3)-N) and suspended sediment export from a typical, grazed oak woodland watershed (103 ha) in the northern Sierra Nevada foothills of California. Mean annual precipitation over the 20-yr period was 734 mm yr(-1) (range 366-1205 mm yr(-1)). Mean annual stream flow was 353 mm y(-1) (range 87-848 mm yr(-1)). Average annual stream flow was 48.1 +/- 16% of precipitation. Mean annual NO(3)-N export was 1.6 kg ha(-1) yr(-1) (range 0.18-3.6 kg ha(-1) yr(-1)). Annual NO(3)-N export significantly (P < 0.05) increased with increasing annual stream flow and precipitation. Mean daily NO(3)-N export was 0.004 kg ha(-1) d(-1) (range 10(-5) to 0.55 kg ha(-1) d(-1)). Mean annual suspended sediment export was 198 kg ha(-1) yr(-1) (range 23-479 kg ha(-1) yr(-1)). There was a positive relationship (P < 0.05) between annual suspended sediment export, annual stream flow and precipitation. Mean daily suspended sediment export was 0.54 kg ha(-1) d(-1) (range 10(-4) to 155 kg ha(-1) d(-1)). Virtually no sediment was exported during the dry season. The large variation in daily and annual fluxes highlights the necessity of using long-term records to establish quantitative water quality targets for rangelands and demonstrates the difficulty of designing a water quality monitoring program for these ecosystems.  相似文献   

18.
Most states in the USA have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles that frequently occurring storms can initiate surface runoff from fields. Once initiated, this hydrological pathway has a high potential to transport P to the stream. In regions where hydrologically active areas of watersheds vary in time and space, surface runoff generation by "saturation excess" has been linked to distance from stream, with larger events resulting in larger contributing distances. Thus, storm-return period and P loss from a 39.5-ha mixed-land-use watershed in Pennsylvania was evaluated to relate return-period thresholds and distances contributing P to streams. Of 248 storm flows between 1997 and 2006, 93% had a return period of 1 yr, contributing 47% of total P (TP) export, while the largest two storms (10-yr return period) accounted for 23% of TP export. Contributing distance thresholds for the watershed were determined (50-150 m) for a range of storm-return periods (1-10 yr) from hydrograph analysis. By modifying storm-return period thresholds in the P Index and thereby contributing distance, it is possible to account for greater risk of P loss during large storms. For instance, increasing return period threshold from 1 (current P indices) to 5 yr, which accounted for 67% of TP export, increased the P-management restricted area from 20 to 58% of the watershed. An increase in impacted area relative to a decreased risk of P loss creates a management-policy dilemma that cannot be ignored.  相似文献   

19.
Model simulations performed representing dairies in a 93000 ha watershed in north central Texas suggest that manure incorporation results in reduced phosphorus (P) losses at relatively small to moderate cost to producers. Simulated manure incorporation with a tandem disk on fields double-cropped with sorghum/winter wheat resulted in up to 33, 45, and 37% reductions in per hectare sediment-bound, soluble, and total P losses in edge-of-field runoff, relative to simulated surface manure applications. The effects of incorporation were evaluated at three different manure application rates. On aggregate across all three manure application rates, significant declines in P losses were obtained with incorporation except for sediment-bound P losses under the N-based manure application rate scenario.We found that the practice of incorporating manure shortly after it has been broadcast on the soil surface could help reduce P losses in such situations where P-based rates alone prove inadequate. The cost the producer incurs when manure is incorporated is on average about 1% of net returns when manure is applied at the N rate and 2-3% when it is applied at alternative P-based rates. In practice the costs could be lower because producers may substitute the manure incorporation operation for a tandem disk operation performed prior to manure application. As more and more dairy producers switch to the use of sorghum and corn silage in dairy rations and consequent on-farm production of these forages, the practice of manure incorporation may help to reduce phosphorus losses resulting from dairy manure applications to fields with these forage crops.  相似文献   

20.
There is an increasing need to document the impacts of conservation‐related best management practices (BMPs) on water quality within a watershed. However, this impact analysis depends upon accurate geospatial locations of existing practices, which are difficult to obtain. This study demonstrates and evaluates three different methods for obtaining geospatial information for BMPs. This study was focused on the Eagle Creek Watershed, a mixed use watershed in central Indiana. We obtained geospatial information for BMPs through government records, producer interviews, and remote‐sensing aerial photo interpretation. Aerial photos were also used to validate the government records and producer interviews. This study shows the variation in results obtained from the three sources of information as well as the benefits and drawbacks of each method. Using only one method for obtaining BMP information can be incomplete, and this study demonstrates how multiple methods can be used for the most accurate picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号