首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
厦门秋季近郊近地面CO2浓度变化特征研究   总被引:2,自引:2,他引:0  
李燕丽  穆超  邓君俊  赵淑惠  杜可 《环境科学》2013,34(5):2018-2024
利用CO2监测仪在厦门近郊中国科学院城市环境研究所超级监测站进行了秋季CO2数据采集,并结合监测站气象要素和气体污染物监测,分析了近地面CO2浓度变化特征、风速风向对其变化特征的影响以及CO2与部分气体污染物的相互关系.结果表明,厦门近郊秋季近地面CO2浓度主要集中分布在375~415μmol.mol-1范围内,约占70.87%;近地面大气CO2日变化曲线呈单峰型结构,CO2浓度日变化范围375.74~418.18μmol.mol-1,日平均最高值出现在黎明前后(408.54μmol.mol-1),最小值出现在午后附近(379.14μmol.mol-1),夜晚(18:00~05:00,北京时间)平均浓度(400.87±4.05)μmol.mol-1高于白天(06:00~17:00)平均浓度(388.86±9.40)μmol.mol-1;风速日变化曲线与CO2呈现完全相反的变化趋势,夜晚时段(22:00~04:00)风速波动范围在1.0~1.5 m.s-1时,对应的CO2浓度变化平稳,基本稳定在(400.72±2.12)μmol.mol-1.白天时段(09:00~18:00)风速变化范围在2.0~2.5 m.s-1时,对应的CO2浓度变化范围较大为379.14~394.83μmol.mol-1;用指数函数模型估测到该站点区域CO2背景浓度为386.84μmol.mol-1;观测期间该站点主要风向为东北偏东,统计该方向上CO2浓度与风速的相关关系,得出CO2浓度与风速呈极显著负相关(r=-0.67),相关系数高于所有方向统计的CO2浓度与风速的相关系数(r=-0.41,P<0.01),不同风向上CO2浓度贡献来源不同;此外,CO2浓度与温度、辐射量呈负相关(r=-0.541/-0.515,P<0.01),与湿度呈正相关(r=0.66,P<0.01);与其它大气气体污染物相比CO2与CO、NO的相关程度较高(r=0.469/0.436,P<0.01),与SO2相关程度较弱(r=0.126,P<0.01),经分析推测监测站点区域CO2排放源部分来自机动车排放,而燃煤排放贡献较小.  相似文献   

2.
河口湿地近地面大气 CO2浓度日变化和季节变化   总被引:1,自引:0,他引:1  
张林海  仝川  曾从盛 《环境科学》2014,35(3):879-884
2011年12月~2012年11月对闽江河口湿地近地面大气CO2浓度(摩尔分数)进行观测,研究CO2浓度的日变化和季节变化特征,结果表明,闽江河口湿地近地面大气CO2浓度的日变化和季节变化都呈典型的"单峰型",表现为"昼低夜高"和"夏低冬高"的规律,日变幅在16.96~38.30μmol·mol-1之间.春、夏、秋、冬这4个季节近地面大气CO2平均浓度分别为(353.74±18.35)、(327.28±8.58)、(354.78±14.76)和(392.82±9.71)μmol·mol-1,而年平均浓度为(357.16±26.89)μmol·mol-1.闽江河口湿地近地面大气CO2浓度的日变化与温度、风速、光合有效辐射、总辐射等主要气象因子呈负相关关系(P<0.05),而1月近地面大气CO2浓度日变化与潮汐水位呈负相关,7月与潮汐水位呈正相关.  相似文献   

3.
北京典型道路交通环境机动车黑碳排放与浓度特征研究   总被引:3,自引:2,他引:1  
本研究对2009年北京市典型道路(北四环中路西段)进行实际交通流监测和调研,分析了总车流量、车型构成和平均速度的日变化规律.应用北京机动车排放因子模型(EMBEV模型)和颗粒物黑碳排放的研究数据,计算该路段的黑碳平均排放因子和排放强度.根据同期观测的气象数据,应用AERMOD模型对道路黑碳排放进行了扩散模拟,并根据城市背景站点和道路边站点的监测数据对模拟结果进行了验证.研究表明,该路段黑碳平均排放因子与重型柴油车在总车流中所占比例呈现出极强的相关性,由于北京市实行货车区域限行制度,日间时段总车流的平均黑碳排放因子为(9.3±1.2)mg·km-1·veh-1,而夜间时段上升至(29.5±11.1)mg·km-1·veh-1.全天时均黑碳排放强度为17.9~115.3g·km-1·h-1,其中早(7:00—9:00)晚(17:00—19:00)高峰时段的黑碳排放强度分别为(106.1±13.0)g·km-1·h-1和(102.6±6.2)g·km-1·h-1.基于同期监测数据验证,AERMOD模型的模拟效果较好.模拟时段的道路黑碳排放对道路边监测点的平均浓度贡献为(2.8±3.5)μg·m-3.由于局地气象条件差异,日间和夜间的机动车排放对道路边黑碳的模拟浓度存在显著差异.日间时段,小型客车排放对道路边站点的黑碳浓度贡献最高,达(1.07±1.57)μg·m-3;其次为公交车,达(0.58±0.85)μg·m-3.夜间时段货车比例明显上升,其黑碳排放占主导地位,贡献浓度(2.44±2.31)μg·m-3.  相似文献   

4.
杀菌剂对湖泊水体温室气体浓度分析的影响   总被引:5,自引:3,他引:2  
通过往湖泊水样中添加杀菌剂(CuSO4和HgCl2),利用平衡法,用气相色谱仪测定CO2、CH4、N2O浓度,研究杀菌剂(CuSO4和HgCl2)添加对湖泊水体CO2、CH4、N2O浓度分析的影响.实验设计:对照组(CK)不加任何试剂;处理组T1加1mL CuSO4溶液,T2加5 mL CuSO4溶液,T3加0.5 mL HgCl2溶液;每组的水样分两批分析:(Ⅰ)预处理完成后立即分析和(Ⅱ)预处理完成后静置两天再分析.结果表明,CuSO4和HgCl2的添加均能明显增加水体中CO2的浓度,CK(Ⅰ)和CK(Ⅱ)的CO2平均浓度分别为(11.5±1.47)μmol·L-1和(14.38±1.59)μmol·L-1,T1(Ⅰ)和T1(Ⅱ)的CO2平均浓度分别为(376±70)μmol·L-1和(448±246.83)μmol·L-1;T2(Ⅰ)和T2(Ⅱ)的CO2平均浓度分别为(885±51.53)μmol·L-1和(988.83±101.96)μmol·L-1;T3(Ⅰ)和T3(Ⅱ)的CO2平均浓度分别为(287.19±30.01)μmol·L-1和(331.33±22.06)μmol·L-1.但CuSO4和HgCl2添加对水体中CH4和N2O的浓度没有影响.对比Ⅰ和Ⅱ的实验结果可知,在水样预处理完成后需当天分析其温室气体(CO2、CH4、N2O)浓度.本研究表明,杀菌剂的添加能显著增加水体CO2的浓度.  相似文献   

5.
北京市大气中CO的浓度变化监测分析   总被引:18,自引:5,他引:13  
薛敏  王跃思  孙扬  胡波  王明星 《环境科学》2006,27(2):200-206
CO是城市大气中一种重要的污染物,在城市和区域的光化学反应中起着重要的作用.用装配氢火焰离子化检测器(FID)的HP5890II气相色谱(GC)方法,以每10min的采样频率,在北京中科院大气物理研究所325m气象环境观测铁塔上(39°9′N,116°4′E),对北京城市大气CO浓度进行了连续监测,时间为2004-01~2004-12.结果显示北京城市大气CO浓度日变化呈双峰型,1d之中出现2个高峰期,早晨07:00~08:00和夜晚22:00~23:00,最高浓度值分别达到13.8mg·m-3,17.1mg·m-3.不同季节CO的日变化存在差异:冬季、秋季的日变化幅度大,而夏季、春季的日变化幅度小.秋季、冬季早晨上班高峰期后CO浓度下降快,春季、夏季上班高峰期后CO浓度下降慢.CO的这种日变化是由地表排放源和气象条件共同决定的.另外,CO存在明显的季节变化,总的表现为浓度最高值出现在冬季12月份(4.0±3.4)mg·m-3,浓度最低值出现在5月份(1.7±0.7)mg·m-3.整个观测期间1a的平均浓度为(2.6±1.9)mg·m-3,采暖期平均浓度为(3.5±2.6)mg·m-3,非采暖期平均浓度为(2.2±1.2)mg·m-3.  相似文献   

6.
兰州市2011年春节期间颗粒物浓度及其谱分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了兰州市2011年1月25日~2月18日春节期间大气颗粒物浓度及其谱分布特征,并通过多元对数正态分布拟合方法对其体积浓度谱特征进行了分析.采用空气动力学粒径谱仪(APS-3321)对颗粒物数浓度及其谱分布进行了实时监测,以阐明兰州市春节期间烟花爆竹燃放对大气颗粒物浓度及其谱分布的影响.结果表明:2011年春节期间兰州市烟花燃放对2月3日~8日颗粒物浓度有不同程度的影响,正月初一00:00~01:00和21:00~22:00时受烟花爆竹燃放影响最大,其中在烟花燃放最为集中时段(2月3日0:00~1:00时)0.5~10μm大气颗粒物平均数浓度、表面积浓度和体积浓度分别为(310.3±97.2)个/cm3、(1061.6±396.0)μm2/cm3和(409.9±176.0)μm3/cm3,分别较未受烟花燃放影响的1月27日~30日0:00~1:00时平均值增加了6.10倍、7.72倍和9.93倍.烟花燃放对数浓度和体积浓度的影响分别主要集中在0.542~1.382μm和3.278~8.354μm粒径段,而对表面积浓度的影响主要集中在0.542~1.981μm和3.278~8.354μm粒径段.受烟花燃放影响的颗粒物体积浓度谱中位径在0.93, 5.50μm左右出现的比例最大,未受烟花燃放影响的颗粒物体积浓度谱中位径在0.85,5.50μm左右出现的比例最大,与未受烟花燃放影响日的颗粒物体积浓度谱相比,燃放烟花使位于积聚模态的体积中位径增加.  相似文献   

7.
淀山湖沉积物的反硝化脱氮能力及其环境意义   总被引:1,自引:0,他引:1  
于2016年5月和7月,使用乙炔抑制法对淀山湖湖区13个样点表层6 cm原状沉积物反硝化速率进行了测定.结果表明,淀山湖表层沉积物中的反硝化速率具有显著的时空变化特征,变化范围在5.72~65.82μmol·m~(-2)·h~(-1)之间,,春季反硝化速率为(28.52±26.21)μmol·m~(-2)·h~(-1),夏季反硝化速率为(29.31±17.11)μmol·m~(-2)·h~(-1).在空间上,表层0~3 cm沉积物中反硝化速率((17.91±11.80)μmol·m~(-2)·h~(-1))高于下层3~6cm沉积物反硝化速率((11.02±10.40)μmol·m~(-2)·h~(-1));反硝化速率与沉积物中可提取NH_4~+-N含量成显著正相关(p0.05),耦合的硝化-反硝化过程是沉积物反硝化作用的主要机制.淀山湖湖区上半年通过反硝化作用可去除约278.70 t的氮,对控制水体氮浓度和削减氮负荷具有重要意义.  相似文献   

8.
祁连山高山草甸土壤CO2通量的时空变化及其影响分析   总被引:2,自引:0,他引:2  
采用Li-6400便携式光合作用测量系统连接Li-6400-09土壤呼吸室,在2004年生长季节对祁连山高山草甸土壤CO2通量沿海拔梯度进行了野外定位试验,统计分析了水热因子及根系生物量对高山草甸土壤CO2通量特征的可能影响.结果表明,土壤CO2通量存在明显的空间变化规律,沿海拔梯度土壤CO2通量随着海拔梯度的增加而逐渐减小,其变异系数逐渐增加;就日变化而言,土壤CO2通量晚间维持在较低水平,02:00~06:00最低,在07:00~08:30开始升高,11:00~16:00达到峰值,16:00~18:30开始下降,整个过程呈单峰曲线.土壤CO2通量的日平均值介于(0.56±0.32)~(2.53±0.76)μmol·(m2·s)-1.从季节变化来看,土壤CO2通量均以夏秋季较高,春冬季排放量较低,7~8月份达到最大值[4.736 μmol·(m2·s)-1],6月与9月份次之,5月与10月份基本一致,整个生长过程总的变化趋势呈单峰曲线形式.高山草甸土壤CO2通量在植物生长季与10cm土壤温度、土壤含水量、根系生物量都存在不同程度的正相关关系,表明高山草甸土壤CO2通量的空间变异主要受温度、水分和植物根系的综合影响.  相似文献   

9.
利用瓦里关全球本底站和番禺气象局站地面观测的CO2浓度资料对改进的Carbon Tracker-2010(CT-2010)模式系统进行了验证.结果显示,CT-2010能较好地反映近地层CO2浓度的分布状况,在瓦里关地区,模拟值与观测值的决定系数(R2)为0.584,残差为4.49μmol·mol-1,相对误差为1.18%;在珠三角地区,上述3个参数值分别为0.430、13.89μmol·mol-1和3.63%.利用CT-2010模式对广东地区近地层典型CO2过程及其影响因素进行了模拟和分析研究.结果表明:在典型高、低浓度CO2过程中,以广州为中心的珠三角区域始终为CO2浓度高值区,从东北至西南方向的梅州、河源、广州、肇庆和云浮等区域存在明显的CO2聚集带.在典型高浓度CO2过程中,珠三角和粤北区域的CO2浓度上升最明显,而粤东和粤西地区的CO2浓度变化较小;在典型低浓度过程中,珠三角、粤北及粤东的CO2浓度波动明显小于过程前和过程后,而粤西地区的CO2浓度波动较大.这些变化主要是受到了风场、下垫面植被、相对湿度及气温等因子的显著影响.  相似文献   

10.
利用开顶气室(Open-Top Chamber,OTC),设置当前大气CO2浓度(370μmol.mol-1)、中等CO2浓度(550μmol.mol-1)和高CO2浓度(700μmol.mol-1)3个CO2浓度水平和不施氮(N1,0g N.m-2.a-1)、常氮(N2,5g N.m-2.a-1)、高氮(N3,10g N.m-2.a-1)3个氮素水平。研究了不同N沉降水平下,大气CO2浓度升高对以三江平原小叶章群落土壤有机碳和氮素含量的影响。结果表明:CO2浓度升高结合氮沉降连续运行两个生长季后,湿地土壤总有机碳含量没有显著变化,说明较短时间内大气CO2浓度升高和氮沉降不会使三江平原土壤有机碳含量产生变化。氮沉降引起各个土层的土壤全氮、铵态氮和硝态氮的含量增加,施氮水平越高土壤氮增加越多,但是全氮增加量不明显,铵态氮随施氮量的增加呈现极显著差异水平(P<0.01)。0~10cm,10~20cm土层土壤全氮、铵态氮的含量随着CO2浓度升高呈现出先增大后减小的趋势。土壤硝态氮含量在10~20cm土层含量变化与土壤全氮、铵态氮的变化趋势相同。说明大气CO2浓度一定程度的增加可以增加土壤的氮素含量,但是过量的大气CO2浓度反而会使得土壤氮素含量减少。  相似文献   

11.
成都市冬季大气颗粒物组成特征及来源变化趋势   总被引:7,自引:0,他引:7  
年冬季分别在成都市8个环境受体采样点采集PM10、PM2.5样品,同时采集颗粒物源类样品,分析上述样品质量浓度及多种无机元素、水溶性离子和碳组分的含量,以对这3 a冬季大气颗粒物浓度、特征组分、来源及变化趋势进行分析. 使用CMB-iteration模型对成都市中心城区的PM10、PM2.5进行来源解析. 结果表明: 成都市冬季ρ(PM10)在工业区最高,PM2.5污染呈现区域性特征;冬季PM10的主要来源有扬尘、二次硫酸盐、煤烟尘、二次硝酸盐和机动车尾气尘,上述5类源在2010─2012年的分担率分别为24%~29%、17%~22%、13%~16%、6%~12%、6%~11%;对PM2.5有重要贡献的源类有二次硫酸盐、扬尘、煤烟尘、二次硝酸盐和机动车尾气尘,这5类源在2010─2012年的分担率范围分别为25%~27%、19%~22%、12%~15%、11%~13%、8%~11%. 二次粒子、扬尘等是成都市大气颗粒物的主要污染源,其中扬尘、建筑水泥尘等以粗粒子为主的源类浓度贡献呈逐年下降趋势,而二次粒子等以细粒子为主的源类浓度贡献则逐年上升,成都市冬季大气细颗粒物污染加重.   相似文献   

12.
近10年海南岛大气NO2的时空变化及污染物来源解析   总被引:4,自引:0,他引:4  
利用OMI卫星反演的NO2柱浓度数据,分析了近10年海南岛对流层NO2柱浓度(Tro NO2)和总NO2柱浓度(Tot NO2)的时空变化,同时结合地面风向、SO2排放资料,以及HYSPLIT模式等探究其大气污染物来源.结果表明,海南岛地区大气NO2呈北半部高于南半部、中部山区低于四周沿海的分布特征,其季节变化表现为冬季高、夏季低的特点,其中夏季浓度偏低和雨水的冲刷作用有关,而冬季浓度偏高与珠江三角洲地区的外源输送作用有密切联系.近10年海南岛大气NO2冬夏季有相反的变化趋势,冬季逐年下降,夏季则有弱的上升趋势.其原因可能是夏季大气污染物以本地排放为主,冬季外源输送起主要贡献作用.海口市Tro NO2与珠江三角洲地区的有利风向日数相关系数为0.84,通过了99%的信度检验.后向轨迹分析表明,2013年12月影响海口市的3条气流移动路径,均不同程度的经过珠江三角洲地区,进一步表明海南岛冬季大气污染物主要以珠江三角洲地区的外源输送为主.  相似文献   

13.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

14.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

15.
河北张家口市大气污染观测研究   总被引:5,自引:1,他引:4  
冀北重镇张家口,全年干旱少雨风沙大,自然生态环境极其脆弱,但近年来工业发展极为迅速.为了解张家口市大气污染物浓度水平及季节变化,2009年12月1日~2010年11月30日,利用自动在线仪器对张家口市区大气典型污染物NOx、SO2、O3和PM10进行了连续观测研究.结果表明,张家口市首要污染物为可吸入颗粒物(PM10),年均质量浓度达(137±105)μg.m-3.NO、NO2、SO2和O3年均质量浓度分别为:(8±13)、(30±15)、(19±26)和(54±35)μg.m-3.NOx和SO2质量浓度冬季最高,分别达(51±35)μg.m-3和(42±29)μg.m-3;夏季最低,分别为(28±8)μg.m-3和(4±3)μg.m-3.O3质量浓度夏季最高,达(92±40)μg.m-3,最高小时均值可达271μg.m-3;冬季最低,为(34±20)μg.m-3.PM10质量浓度春季最高,达(144±131)μg.m-3;冬季最低,为(130±129)μg.m-3,但季节变化不明显.依照国家二级标准PM10日均值超标率为28%.季节统计日变化显示NOx和PM10为早晚双峰型,SO2为午间单峰型,O3为午后单峰型.张家口市区大气污染日变化受到交通源显著影响,气态污染物冬季受取暖燃煤显著影响.夏季东南气流对张家口O3有输送作用,自西北的沙尘及局地扬尘(浮尘)对张家口PM10影响显著,并对华北平原区域造成一定影响.  相似文献   

16.
长春市大气SO2、O3和NOx的变化特征及来源   总被引:2,自引:0,他引:2  
为研究长春市采暖期大气污染物的污染水平及其随时间的变化特征,于2012年1—6月通过在线监测仪获取了大气中ρ(SO2)、ρ(O3)和ρ(NOx),利用HYSPLIT(混合型单粒子拉格朗日综合轨迹模式)后向轨迹模型结合地面气象资料,初步分析了该市大气污染物的可能来源及传输过程. 结果表明:观测期间ρ(SO2)和ρ(NOx)的日均值分别为(25.0±21.6)和(54.4±34.0)μg/m3,ρ(O3)最大8 h平均值为(85.0±26.2)μg/m3,ρ(SO2)、ρ(NOx)和ρ(O3)的变化范围分别为2.3~131.0、17.6~183.7和31.0~173.3 μg/m3;其中ρ(O3)日均值超过GB 3095—2012《环境空气质量标准》二级标准限值的时间为2 d,ρ(SO2)和ρ(NOx)均未超过二级标准限值,但ρ(SO2)日均值在采暖期超过GB 3095—2012一级标准限值的时间为23 d,占采暖期的24%. 采暖期ρ(SO2)日变化为双峰型,峰值出现在06:00和20:00左右,而在非采暖期表现为单峰型,峰值出现在08:00左右;ρ(O3)表现为单峰型,峰值出现在13:00─15:00;ρ(NOx)在采暖期表现为双峰型,而在非采暖期表现为单峰型. 对观测期间72 h内HYSPLIT后向轨迹模拟结果和气象数据的分析表明,长春市大气污染主要受本地源的影响,偏西气流易对污染物造成积累,而偏东气流有利于污染物扩散.   相似文献   

17.
苏北潮滩温室气体排放的时空变化及影响因素   总被引:5,自引:4,他引:1  
滨海湿地温室气体CO_2、CH_4和N_2O的排放在全球碳氮循环中发挥着重要的作用,进一步影响着全球气候变化.为研究滨海湿地CO_2、CH_4和N_2O排放的时空变化及影响因素,以苏北潮滩为例,采用静态暗箱-气相色谱法,于2013年4月至2014年3月,测定了不同时空尺度下CO_2、CH_4和N_2O通量的变化规律,并分析了影响温室气体通量变化的环境因素.结果表明,CO_2、CH_4和N_2O通量的季节变化的最大值出现在夏季,CO_2和N_2O通量的最小值出现在冬季,而CH_4在春季表现为弱吸收;互花米草滩年均排放CO_2量最大,为(766.3±496.9)mg·(m2·h)~(-1),芦苇滩年均排放CH_4和N_2O最大,分别是(0.420±0.900)mg·(m2·h)~(-1)和(17.4±5.0)μg·(m2·h)~(-1).光滩表现为对CH_4的吸收,为(-0.004±0.032)mg·(m2·h)~(-1),对CO_2和N_2O的排放,且排放通量最小,分别是(57.1±16.2)mg·(m2·h)~(-1)和(6.1±2.1)μg·(m2·h)~(-1).全球变暖潜能的最大值出现在互花米草滩,为68 841.280 kg·(hm2·a)~(-1),分别是芦苇滩和碱蓬滩的1.41倍和3.02倍,光滩的GWP最小,为5 002.100 kg·(hm2·a)~(-1).通过Pearson相关分析发现,除光滩外,CO_2通量与气温、土温呈显著的相关性(P0.05),而CH_4和N_2O通量与温度则不存在显著的相关性.尽管如此,CO_2、CH_4和N_2O通量的时间变化更多地是受温度以及植被生长状况的影响,而空间变化则主要由植被的状况所决定;外来种互花米草主要是通过增加CO_2排放来影响滨海湿地的全球变暖潜能.  相似文献   

18.
谭叶玲  邹长伟  黄虹  魏宸 《环境科学研究》2019,32(12):2098-2107
为定量云水和云下冲刷分别对降水中SO42-、NO3-的贡献,并进一步解析云下冲刷颗粒相和气相物质分别对降水样品中SO42-、NO3-的贡献,于2016年4月-2017年2月采用APS-3A型降水自动采样仪对降水进行分段采集.采用离子色谱检测分段降水样品的ρ(SO42-)、ρ(NO3-),分析其变化规律;在降水前、降水中及降水后同步采集并检测大气颗粒相ρ(SO42-)、ρ(NO3-)和气相ρ(SO2)、ρ(NO2),分析颗粒相中ρ(SO42-)、ρ(NO3-)和气相中ρ(SO2)、ρ(NO2)的变化与分布.结果表明:①ρ(SO42-)、ρ(NO3-)在同一场降水的分段样品中呈逐渐降低至后期趋于平稳的趋势,说明降水对空气中污染物的冲刷使空气逐渐清洁,后期冲刷作用有限使得降水中离子质量浓度趋稳.②颗粒相中ρ(SO42-)、ρ(NO3-)与气相中ρ(SO2)、ρ(NO2)在降水前较高,在降水中减小,并在降水后回升,说明降水对颗粒相SO42-、NO3-和气相SO2、NO2均有清除作用,降水结束后无云下冲刷作用,污染物质量浓度逐步回升.③云水对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为22%~56%(平均值为35%)、9%~49%(平均值为29%),云下冲刷颗粒相SO42-、NO3-对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为39%~69%(平均值为55%)、43%~73%(平均值为56%),云下冲刷气相SO2、NO2对降水中ρ(SO42-)、ρ(NO3-)的贡献率分别为5%~17%(平均值为10%)、5%~19%(平均值为15%).研究显示,降水中SO42-、NO3-主要来源于云水和云下冲刷颗粒相SO42-、NO3-,而来源于云下冲刷气相SO2、NO2较少.   相似文献   

19.
浮游植物最大光合作用效率(F_v/F_m)可以判断水生生态环境状况,是探究梯级筑坝对河流生态环境影响的重要参数。本研究对三岔河梯级水库的浮游植物F_v/F_m及相关的水化学参数进行了季节性调查,探讨F_v/F_m的时空变化及其环境影响因素。结果表明,F_v/F_m具有明显的时空差异性,在空间分布上为库区下泄水河流;F_v/F_m和浮游植物总细胞丰度呈现显著正相关,库区总细胞丰度大,F_v/F_m比其它区域高。在时间分布上为冬季夏季≈秋季春季,表明浮游植物在水温较低时,会提高光合作用效率,F_v/F_m增高。  相似文献   

20.
基于Aura/OMI卫星资料,分析了上海地区2007—2016年近十年对流层低层O_3浓度(0~3 km)、SO_2柱浓度和硫酸盐气溶胶光学厚度(0~2 km)时空演变特征.结果表明,近十年来上海地区臭氧浓度总体呈现上升的趋势,最低值在2008年,为31.57μg·m~(-3),最高值在2016年,浓度为40.72μg·m~(-3);O_3季节变化明显,夏季高、春秋次之、冬季低.十年来,硫酸盐气溶胶污染先减少后增加,2007年硫酸盐气溶胶(AOD=0.81)污染最为严重,占近十年硫酸盐气溶胶发生频率的16.41%,2010年污染最轻(AOD=0.68),比2007年下降了16.12%,且硫酸盐气溶胶污染频率为7.68%,但在2013年以后,硫酸盐气溶胶污染又出现增长趋势;污染季节特征与O_3相同,这主要是因为夏季阳光充足有利于大气光化学反应的进行,从而使O_3和硫酸盐气溶胶等光化学产物的浓度升高.SO_2浓度在2007—2014年总体呈现下降的变化趋势,且下降趋势明显,最低值(2014年)比最高值(2007年)降低了52.76%,但在2014年后SO_2浓度略有反弹;SO_2污染主要集中在冬季.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号