首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
北京地区夏冬季颗粒物污染边界层的激光雷达观测   总被引:35,自引:4,他引:31  
在对激光雷达测量数据处理方法讨论的基础上,根据"北京空气污染物垂直结构测量试验"(BAPIE)冬季和夏季测量的数据,对北京地区气溶胶高度分布及近地面气溶胶污染边界层指标、气溶胶污染边界层统计特征、气溶胶输送南北通量高度分布、API-Ⅰ级优质大气和Ⅴ级重度污染个例等,进行了讨论。   相似文献   

2.
天津夏季黑碳气溶胶及其吸收特性的观测研究   总被引:12,自引:2,他引:10       下载免费PDF全文
利用天津城市边界层观测站2010年8月12日~9月18日期间的黑碳、污染物和气象梯度观测数据,分析天津市夏季黑碳气溶胶浓度的变化特征及其影响因子.结果表明, 观测期间,黑碳气溶胶浓度均值为6.309mg/m3,占PM10质量浓度的4.17%,其吸收消光占气溶胶总体消光的10.23%.受人类活动和边界层结构影响,黑碳气溶胶浓度日变化呈双峰型,7:00达到峰值,14:00~16:00最小,20:00达到次高峰.黑碳气溶胶浓度随风速增加呈下降趋势,当风速超过4m/s时,浓度一般低于5mg/m3,西风及西北风对天津城区黑碳气溶胶输送作用明显,其出现大于10mg/m3的高黑碳气溶胶事件概率为18.07%;逆温和大气稳定易造成黑碳气溶胶在近地层的堆积,形成高污染事件.  相似文献   

3.
北京上空气溶胶浓度垂直廓线特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用2008—2010年北京地区3.5 km高空内飞机探测的气溶胶(粒径范围为0.10~3.00 μm)数据,分析了该地区气溶胶的时空分布特征. 结果表明:①气溶胶浓度(以数浓度计,下同)均随高度增加而减小,在1.5 km以上高空的气溶胶浓度垂直梯度变化明显低于1.5 km以下的垂直梯度变化. 4—11月气溶胶浓度季节变化表现为夏季最高、秋季次之、春季最低. ②气溶胶浓度廓线逐时(09:00—19:00)变化较清晰地反映出其受大气边界层演变的影响. 在0~1.5 km高空,白天气溶胶浓度高值出现在09:00—11:00,低值出现在13:00—14:00;而在1.5~3.5 km高空的气溶胶浓度时段分布与其相反. ③人为活动是影响气溶胶浓度区域水平分布的重要因子. ④将气溶胶浓度廓线垂直分布分为a、b、c 3类. 类型a的近地面气溶胶浓度(0~4 000 cm-3)低,垂直方向上变化很小;类型b的近地面气溶胶浓度(4 000~9 000 cm-3)较高,垂直递减明显;类型c的近地面气溶胶浓度特别高,量级达到104 cm-3,并在大气边界层顶(约1.5 km)附近迅速递减. 北京地区气溶胶浓度廓线以类型b居多.   相似文献   

4.
WRF模式对污染天气下边界层高度的模拟研究   总被引:1,自引:0,他引:1  
大气边界层高度是影响大气污染物浓度的重要因素之一,但数值模式中选择不同边界层参数化方案模拟的边界层高度有很大差异.利用WRF模式中5种边界层参数化方案及2006~2007年春、秋、冬3季河北香河地区激光雷达观测资料,对比分析了污染天气下,不同边界层方案对边界层高度的模拟效果,并分析了误差产生的可能原因.结果表明:5种参数化方案均能模拟出3季污染天气下边界层高度的变化特征,但各方案模拟的边界层高度与观测之间均存在较大误差.模拟的最大边界层高度月变化特征显示,秋冬季的模拟结果与观测值匹配较好,春季偏差较大;模拟的边界层高度日变化显示,均方根误差:春季 > 秋季 > 冬季,且误差在午后(14:00~18:00)更加明显;对该地区而言,非局地YSU方案能较好地模拟污染天气下的边界层高度;各参数化方案中边界层高度计算方法的不同及对大气廓线、湍流动能的模拟差异,可能是造成模拟边界层高度产生误差的主要原因.  相似文献   

5.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

6.
2018年12月15~18日使用激光雷达在河北望都观测气溶胶与O3,利用气溶胶消光系数廓线判断边界层的变化,进而研究大气边界层对于近地表层(300m)O3浓度的影响.结果表明,边界层主要影响O3的干沉降以及高空O3的垂直输送,在受本地污染控制时,近地表O3浓度受干沉降控制明显,随着边界层高度的下降而减少;西北地区气团占主导时,O3浓度主要受水平传输以及高空垂直输送影响.  相似文献   

7.
目的探测大气气溶胶的垂直分布,表征气溶胶的垂直结构和各层气溶胶的性质。方法使用金华站点激光雷达观测数据进行个例分析,用梯度法对边界层进行反演,利用退偏振比、颜色比和光学厚度对大气中不同高度的气溶胶层进行分析。结果大气垂直结构会出现多层不同性质的气溶胶层,激光雷达可以准确地探测气溶胶随时间变化的垂直结构特征。选取0点至8点进行分析表明,在1.5km高度上下出现两层气溶胶层,上下两层气溶胶层呈现出不同的性质,且其性质会随时间变化而改变。结论大气边界层以外气溶胶分布较为复杂,利用激光雷达探测的气溶胶消光系数、退偏振比、颜色比和光学厚度等参数能够较好地表征气溶胶的垂直结构和各层气溶胶的性质。  相似文献   

8.
利用米散射激光雷达ALS300系统在北京城区开展了为期近1年的观测,观测时间为2009年6月~2010年5月份.先将观测数据划分为春(3~5月份)、夏(6~8月份)、秋(9~11月份)、冬(12~2月份)四个季节,再对数据进行质量控制.研究了气溶胶后向散射系数、消光系数以及气溶胶光学厚度AOT和大气边界层的日均值变化特征,以及这些要素的季节和全年特征统计值.结果表明,气溶胶消光系数和后向散射系数的日平均变化形态趋于相同,数量上消光系数是后向散射系数的约10倍.它们的季节平均值廓线形态结构也并没有呈现出明显的季节性结构特征差异,2个系数最大递减均发生在1km高度范围内.在0.15~3.0km高度范围做垂直平均,夏季的后向散射系数和消光系数有最大平均值(分别为31.2Mm-1·sr-1和517.0Mm-1),说明夏季有较强对流.冬季后向散射系数和消光系数最低.对于冬、春2个季节,700m高度是2个量大小分化的高度.700m高度以上,春季的后向散射系数和消光系数均大于冬季.AOT和大气边界层高度的日均值波动特性明显,日均值最大振幅出现在春季.月平均来说,在春季,气溶胶层高度和边界层高度最高(分别为3450m和970m),冬季最低(分别为2970m和712m).春、夏季节AOT波动变化大,而在秋季和冬季变化比较平缓.春夏秋冬4个季节的平均气溶胶光学厚度分别是0.689、0.699、0.571和0.647.  相似文献   

9.
朱育雷  倪长健  崔蕾 《环境工程》2017,35(1):98-102
基于2014年1月21日至2月5日成都市人民南路四段逐时PM_(2.5)质量浓度、大气能见度资料以及同期Mie散射激光雷达探测数据,遵循消光系数与细颗粒物质量浓度之间的关系,探讨污染边界层高度的演变特征。结果表明:污染时段内的污染边界层高度偏低,平均为221m;污染边界层高度与地面PM_(2.5)浓度的变化具有明显相关性,但污染边界层高度改变在前,地面PM_(2.5)浓度响应在后;污染边界层高度的日变化表现为单峰单谷型,峰值和谷值分别出现在08:00时和14:00时前后。  相似文献   

10.
北京城区夏季静稳天气下大气边界层与大气污染的关系   总被引:7,自引:2,他引:5  
王耀庭  李威  张小玲  孟伟 《环境科学研究》2012,25(10):1092-1098
利用ALS300激光雷达系统测量的信号,根据Fernald方法反演的气溶胶消光系数的最大突变即最大递减率的高度确定大气边界层高度. 结果表明:在夏季静稳天气下,大气边界层平均高度为600 m,其中晴天为1 000 m,雾天为700 m,阴雨天在200~300 m之间. 静稳天气下的大气边界层不容易被有效突破,故不利于大气污染物扩散. 大气边界层高度对污染物浓度影响显著,没有降雨时,大气边界层降低(400 m),大气污染加重,在城区宝联站监测的ρ(PM2.5)近200 μg/m3,在大气本底站——上甸子站近150 μg/m3;如果伴有降水,大气边界层高度升至600 m,大气污染则减轻,2个站点观测的ρ(PM2.5)均降至50 μg/m3以下. 静稳天气下的大气污染呈现区域性特点.   相似文献   

11.
采用WRF模式中YSU、MYJ和ACM2 3种边界层参数化方案,利用WRF模式和空气质量模式CAMx对2015年11月11~15日发生在京津冀地区的一次污染过程进行了模拟,同时利用地面气象要素、风廓线、秒探空和空气质量观测数据对3种参数化方案下的模拟结果进行了验证对比.一种基于临界垂直湍流交换系数确定边界高度的方法被用于对比3种参数化方案之间垂直扩散能力的差异.结果表明,MYJ方案对10m风速高估最大(平均高估0.66m/s),对2m温度和2m湿度低估最小,YSU和ACM2方案对地面气象要素的模拟效果相近;ACM2方案对于边界层内垂直廓线模拟效果优于YSU和MYJ方案,但是3种参数化方案对边界层内风速均存在高估(高估可达2.6m/s);基于临界垂直湍流交换系数方法定义的边界层高度更能反映大气的垂直扩散能力,MYJ方案边界层高度最小,其模拟的PM2.5浓度最高;MYJ方案对于地面风速的高估,会降低模拟的区域整体PM2.5浓度,但是会增加风速较大区域下风向的PM2.5浓度;ACM2方案对边界层垂直廓线模拟最好,夜间底层垂直湍流交换系数计算值较大,使得ACM2方案对于本次过程中PM2.5等污染物的模拟优于MYJ和YSU方案.  相似文献   

12.
利用偏振-米散射激光雷达、颗粒物监测仪数据,结合风廓线等气象资料分析讨论了2012年3月25日广州浮尘天气气溶胶污染事件,通过气团后向轨迹分析了沙尘气溶胶的来源及路径.结果表明本次污染过程与我国西北地区大部沙尘暴产生的浮尘远距离输送有关;浮尘期间相对湿度迅速下降,测点PM10中PM2.5所占的比例在28%~31%之间,与广州地区以细粒子污染为特征不同,本次气溶胶污染事件主要是由粗粒子引起;影响近地面的沙尘层主要分布高度在1000~2000m区域;沙尘过境期间探测到气溶胶最大退偏比为0.34.  相似文献   

13.
利用TM影像反演广州市气溶胶光学厚度空间分布   总被引:4,自引:2,他引:2  
利用2005年7月18日摄录的广州市TM影像,在相关研究基础上建立了适合于复杂大气状况城市尺度的气溶胶光学厚度(Aerosol Optical Depth,AOD)反演模型,研究了广州市30m空间分辨率的AOD空同分布,并与同期的广州市地面9个空气质量监测站的PM10浓度进行比较.结果表明,利用TM影像较好地反演了广州市AOD空间分布.地形、植被、建成区分布是影响广州市AOD空间分布的主要因素,AOD按照高山植被区、靠近建成区的山地植被区、建成区与平原植被区的顺序逐渐增加.地面监测的PM10浓度与AOD的相关系数为0.717,基于TM影像反演的AOD可较好地反映当日地面污染物PM10的空间分布.  相似文献   

14.
运12飞机和空中国王飞机在2007~2018年的飞机观测资料,分析了北京地区大气气溶胶近12a来的时空变化特征.结果表明,气溶胶数浓度随时间变化显示负增长趋势,而与之相反,气溶胶有效直径表现出正增长趋势.气溶胶垂直廓线的季节变化和气候条件以及边界层的季节变化紧密相关.在边界层高度,季节性气候变化和地面污染物排放强度的影响下,不同季节以及地面天气形势下的气溶胶垂直廓线特征差异也十分明显.气溶胶在边界层内混合均匀,但由于夏季边界层高度较冬季更高,气溶胶能够在更高的高度范围内混合均匀,从而降低了夏季近地面的气溶胶数浓度.此外,气溶胶在550nm的入射波长下散射系数的垂直变化与气溶胶数浓度有较好的一致性,其高值多出现在冬季以及污染物浓度较高的天气条件下.  相似文献   

15.
广州地区光化辐射通量与辐照度的特征   总被引:2,自引:1,他引:1       下载免费PDF全文
应用NCAR TUV辐射模式与地表实际观测分析了理论上广州地区地表可获得的最强光化辐射通量、辐照度及其波谱变化特征与月、日变化特征,计算与观测的差异用于评估气溶胶对紫外辐射通量的作用.结果表明,光化辐射通量与辐照度均具有正弦曲线的日变化特征,但光化辐射通量的正弦波形较辐照度的更为宽广,其辐射强度随太阳天顶角的增加下降幅度也更为缓慢;光化辐射中的总能量可见光谱区约占86%,紫外谱区仅占约14%;理论计算与实际观测表明,不同监测波段范围的紫外辐射表,虽然其标识均为监测UVA或UVB的辐射,但差异明显;广州地区的气溶胶污染显著影响紫外辐射通量.由于紫外辐射通量是影响对流层臭氧生产力的关键因子,有必要更加深入地认识广州地区气溶胶与紫外辐射通量的相互作用.  相似文献   

16.
利用MODIS遥感数据反演广州市气溶胶光学厚度   总被引:10,自引:1,他引:9       下载免费PDF全文
利用中分辨率成像光谱仪(MODIS)数据和NASA的V5.2气溶胶业务反演算法,对广州市进行了高空间分辨率气溶胶光学厚度的反演,并应用地面太阳光度计(CE-318)观测的气溶胶光学厚度进行验证.结果表明,利用MODIS L1B数据进行高分辨率气溶胶光学厚度反演,结果精度较高.利用反演结果分析2008~2009年冬季广州市的气溶胶光学厚度时空变化特征,2008年12月的气溶胶光学厚度较低,平均大约为0.65,随后气溶胶光学厚度逐渐增大,到2009年2月,气溶胶光学厚度平均大约为1.35.广州市气溶胶光学厚度空间差异显著,在0.1~1之间变化,呈东北低西南高的空间分布特征.即森林覆盖率比较高的地区气溶胶较低.  相似文献   

17.
使用大流量采样器加分级采样头在广州市区和郊区设点进行了采样,用GC/ITD和GC/FID对大气气溶胶中的正构烷烃和多环芳烃做了定性和定量分析,并用回归法进行了数据处理,探求了气溶胶中有机物的含量与颗粒物粒径之间的分布关系。结果表明:34~46%的气溶胶颗粒物,31~49%的正构烷烃,50~70%的多环芳烃能穿透和滞留在肺泡;78~79%的气溶胶颗粒物,87~88%的正构烷烃,95~98%的多环芳烃能进入呼吸道,对人体健康的危害很大。研究还发现:大气颗粒物、正构烃和多环芳烃的粒径分布符合对数正态分布规律。   相似文献   

18.
北京2013年1月连续强霾过程的污染特征及成因分析   总被引:10,自引:0,他引:10       下载免费PDF全文
以北京市2013年1月份连续灰霾天气中10~16日的强霾污染过程为例,利用MPL-4B型IDS系列微脉冲激光雷达观测资料由Fernald算法反演得到此次污染过程中气溶胶垂直分布特性,结合地面气象条件和天气形势分析污染原因,并讨论与气溶胶地面监测数据的符合性.结果表明:此次连续强霾过程污染严重,观测时段内89.4%的时间出现霾,39.8%的污染时段达到重度霾级别,其中大气地表消光系数与PM2.5浓度变化呈显著线性相关关系,相关系数达0.95.研究过程内,大气边界层在91%的时段低于500m,平均仅为293m,低边界层抑制了污染物的有效扩散;近地面垂向各高度的消光系数持续达到1.5km-1以上,对比气溶胶退偏比发现城市上空的大气强消光为气溶胶颗粒物和大气水分共同导致;气溶胶光学厚度(AOD,532nm)较大,有83.6%的时段超过1,且受相对湿度影响较大,相对湿度偏小时段的AOD值主要为气溶胶颗粒贡献,相对湿度较大时段,细颗粒物吸湿增长导致AOD受大气水分干扰显著.连续静稳的天气形势和区域污染是导致此次强霾发生和持续的主要原因,高湿天气则加剧了灰霾状况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号